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Targeted electric signal use for disease diagnostics and treatment is emerging as

a healthcare game-changer. Besides arrhythmias, treatment-resistant epilepsy

and chronic pain, blindness, and perhaps soon vision loss, could be among

the pathologies that benefit from bioelectronic medicine. The electroretinogram

(ERG) technique has long demonstrated its role in diagnosing eye diseases and

early stages of neurodegenerative diseases. Conspicuously, ERG applications are

all based on light-induced responses. However, spontaneous, intrinsic activity

also originates in retinal cells. It is a hallmark of degenerated retinas and

its alterations accompany obesity and diabetes. To the extent that variables

extracted from the resting activity of the retina measured by ERG allow the

predictive diagnosis of risk factors for type 2 diabetes. Here, we provided

a comparison of the baseline characteristics of intrinsic oscillatory activity

recorded by ERGs in mice, rats, and humans, as well as in several rat strains, and

explore whether zebrafish exhibit comparable activity. Their pattern was altered

in neurodegenerative models including the cuprizone-induced demyelination

model in mice as well as in the Royal College of Surgeons (RCS−/−) rats. We also

discuss how the study of their properties may pave the way for future research

directions and treatment approaches for retinopathies, among others.
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1 Introduction

Electroretinogram (ERG) is the only functional test
recommended by the International Society for Clinical
Electrophysiology of Vision to assess retinal function and,
accordingly, diagnose retinal abnormalities (Robson et al., 2018).
Its use has certainly been simplified since its first clinical application
in the 1900s. International standardized protocols exist (Robson
et al., 2018), as well as non-invasive, non-mydriatic, portable ERG
devices (Fukuo et al., 2016). However, whatever the modality, ERG
tests are always based on the response of retinal cells to light flash
stimuli. This fact drew our attention, because both healthy and
neurodegenerative adult retinas are able to produce spontaneous
activities, and their assessment through a non-invasive method
could open future research directions and treatment approaches
based on their properties.

In the neurodegenerative retina, abnormal spontaneous
rhythms coming from both the outer and inner retinal circuits have
been widely characterized (Euler and Schubert, 2015; Trenholm
and Awatramani, 2015), but studies on healthy adult retinas are
less consistent. However, several different kinds of neurons have
been noted to oscillate on their own at frequencies ranging from
0.7 to >10 Hz. There have also been reports of spontaneous
Ca2+−dependent membrane oscillations in the axon terminals of
bipolar cells (Burrone and Lagnado, 1997; Zenisek and Matthews,
1998; Ma and Pan, 2003). If this occurs, rhythmic activity in post-
synaptic neurons, including amacrine and ganglion cells will be
driven by the pulsatile release of neurotransmitters (Vigh et al.,
2003; Petit-Jacques et al., 2005). Intrinsic oscillatory activity can
also be produced by several types of amacrine cells (Feigenspan
et al., 1998; Solessio et al., 2002). In instance, starburst amacrine
cells have documented low-amplitude oscillations (Petit-Jacques
et al., 2005). Additionally, retinal ganglion cells exhibit both regular
and erratic spontaneous oscillatory discharge patterns (Kuffler,
1953; Steinberg, 1966; Neuenschwander et al., 1999; Pang et al.,
2003; Petit-Jacques et al., 2005; Murphy and Rieke, 2006; Sagdullaev
et al., 2006; Margolis and Detwiler, 2007; Yee et al., 2012).

Due to the inherent oscillators present in the inner retina
(Burrone and Lagnado, 1997; Feigenspan et al., 1998; Zenisek
and Matthews, 1998; Solessio et al., 2002; Ma and Pan, 2003;
Vigh et al., 2003; Petit-Jacques et al., 2005), the ability of these
cells to be electrically connected (Trenholm and Awatramani,
1995), and the extensive network connections taking place there
(Neuenschwander et al., 1999) should induce a retinal oscillatory
field potential.

However, under conditions of constant ambient light, it has
been observed that wild-type retinas do not produce spontaneous
oscillatory local field potentials (LFP) (Menzler and Zeck, 2011).
Since the oscillatory LFP changes over time and influences the
retinal ganglion cell spikes’ responses to electrical stimulus in
degenerative retinas, it has been suggested that it can serve as a
marker of the stage of degeneration (Goo et al., 2016), even though
it has been considered noise that reduces the efficacy of signal
transmission within the retinal neuronal network (Yee et al., 2012).
Because of this, most of the knowledge about spontaneous retinal
oscillations, has been obtained using single-cell recordings, multi-
unit recordings of spiking retinal ganglion cells, and/or LFP in
retinal explants. Here, we compared the oscillatory characteristics
of mock ERG signals in mice, rats, and humans, we also compared

them in different strains of rats, we explored the possibility that this
activity could also be recorded in zebrafish, and we tested whether
it is altered under neurodegenerative conditions. We also discuss
how the presence of intrinsic retinal activity in mammals will allow
for the study of properties that may pave the way for future research
directions and treatment approaches to retinopathy, among others.

2 Methods

2.1 Ethics

All animal experiments manipulations, protocols and
procedures were approved by the Bioethics Committee of the
Institute of Neurobiology (protocol #74) at UNAM (clave NOM-
062-ZOO-1999), in accordance with the rules and regulations of
the Society for Neuroscience: Policies on the Use of Animals and
Humans in Neuroscience Research. Approval was obtained from
the IMO and INDEREB Human Participants Ethics Committee
(reference: CEI/029-1/2015), the National Ethics Committee
(reference: CONBIOÉTICA-09-CEI-006-20170306), the Research
Committee at APEC (17 CI 09 003 142), and the Research
Ethics Committee at ENES León (reference: CEI_22_06_S21). All
procedures were conducted in accordance with the tenets of the
Declaration of Helsinki. Written informed consent was provided
by all subjects.

2.2 Animal models

Male C57BL/6 mice (8 weeks of age) exposed (n = 6) or not
(n = 9) to a cuprizone (0.3%) containing diet for 3 weeks plus
1 week of standard diet, male Wistar adult rats (250–300 g) (n = 6),
and male Long Evans (250–300 g) (n = 3) from the Institute of
Neurobiology’s animal house were used, as well as 3-month old
wild-type Royal College Surgeons (RCS+/+, n = 3) and RCS−/−

(n = 4) rats from the Institut de la Vision’s vivarium (Martínez-
Vacas et al., 2022). Rodents were fed ad libitum and reared in
normal cyclic light conditions (12 h light/dark cycle) with an
ambient light level of 400 lux.

Young adult zebrafishes (Danio rerio) (n = 4) were obtained
from the Institute of Neurobiology’s animal house and maintained
as described elsewhere (Espino-Saldaña et al., 2020).

2.3 Human dataset

A total of 109 metabolically healthy subjects, aged between 20
and 76 years (mean: 37.41 ± 1.67 years, 55 females), were enrolled
between 26 February 2015 and 15 April 2023 in the Mexican
Institute of Ophthalmology (IMO) of Querétaro, “Instituto de
la Retina del Bajío” (INDEREB) of Querétaro, “Asociación Para
Evitar la Ceguera” (APEC) in Mexico City, and “Clinica de Salud
Visual” at ENES-UNAM Unidad León. All of them completed all
tests required for the current study. Subjects were categorized as
controls, based on the information of the anamnesis, standard
blood test data, and optometric and ophthalmologic examinations,
as previously described (Imm et al., 2023). Patient demographics
and biometrics are shown in Table 1. It should be noted that
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TABLE 1 Patient demographics and biometrics.

CONTROLS

n 109

Age (years) 37.41± 1.67

DM1 –

DM2 –

Body weight (Kg) 55.14± 0.99

Waist circumference (cm) 85.25± 1.23

Abdominal circumference (cm) 77.40± 1.16

BMI (Kg/m2) 21.39± 0.24

Glycemia (mg/dl) 83.26± 0.67

HbAlc (%) 5.31± 0.02

Insulinemia (µUI/ml) 7.52± 0.40

HOMA-I 1.59± 0.08

TG (mg/dl) 109.23± 5.46

CT (mg/dl) 184.94± 3.71

HDL (mg/dl) 55.32± 1.80

LDL (mg/dl) 109.47± 2.53

TG/HDL 2.93± 0.52

Creatinine (mg/dl) 0.79± 0.01

Systolic blood pressure (mmHg) 113.70± 2.05

we re-used the data of healthy participants collected between 16
February 2015 and 17 June 2022, used in a previously published
study (Imm et al., 2023), and completed them with new data
collected between 17 June 2022 and 15 April 2023, with the new
purpose of comparing the spectral characteristics of these signals
between invertebrate and mammalian species.

2.4 Electroretinograms in animals

Retinal function was examined by recording in vivo ERGs in
rodents, following the procedure described in our previous study
(Imm et al., 2023) and in young adult zebrafish (Nadolski et al.,
2021) with some modifications.

As we aimed to compare the spectral characteristics of intrinsic
retinal oscillations in different species, we opted to record ERG
under the light phase of the photocycle.

Zebrafishes were anesthetized with tricaine methanesulfonate
for 1 min and placed on their side with one eye pointed upwards
in a low-melting point agar. By using a micromanipulator, the
recording electrode’s tip was gently positioned in the middle of
the cornea. Recordings were done using the reference electrode
first within and then outside of the retina to discard artifacts. The
signal recorded with the electrode in the recording medium without
touching the cornea was subtracted from the signal acquired from
the retina. After the test, the fish were placed into a recovery
tank. Mice and rats were euthanized by CO2 inhalation at the end
of the experiment.

The recording sequence was identical in zebrafish and rodents:
baseline mesopic activity was measured for 5 min and then after
adaptation to normal light (400 lux) for 20 min, baseline photopic
activity for 5 min was measured. At the end, ERG responses were
evoked by light stimulation: 0.7 ms flashes of 0.38 log cd.s/m2

(MGS-2 white Mini-Ganzfeld Stimulator, LKC Technologies) for all
animals, except RCS rats [flashes of 10 cd.s/m2 (Led White-6500k)],
to generate photopic ERG responses (bright ambient background
at 20 cd/m2). The mean response to 10 flashes (30 s intervals) was
used to confirm retinal function.

2.5 Electroretinograms in humans

Non-evoked ERGs were registered using customized protocols
with either RETIMAX (CSO), Moonpack (Metrovision), or
RETeval (LKC Technologies) electroretinographs. Under light
conditions (∼400 lux), the contour of the eye and the forehead
of the subject were cleaned before placing both recording and
reference electrodes. The same procedure was repeated for the
second eye whenever possible. ERGs consisted of 5-min recordings
in the absence of any light flash under photopic conditions
(400 lux). Recording conditions included a band-pass filter of
0.3 Hz to 1 kHz and an acquisition frequency of 2 kHz.
Subsequently, raw data were digitally filtered between 0.3 and
40 Hz, as previously described (Imm et al., 2023). ERGs were
then divided into one-min segments to maximize the number
of samples. From the ERGs of 109 patients, 1,090 1-min ERG
fragments were obtained.

2.6 ERG data processing and analysis

The spectral analysis of non-evoked ERGs was similar for all
species. Signals initially acquired between 0.3 and 100 Hz were
digitally low-pass filtered at 40 Hz. From the initial dataset of ERGs,
all ERGs passed the recording artifact filter that consisted in the
removal of recording sections with at least 6 identical contiguous
values at the beginning and at the end of the recorded sequence.
When value repeats happened in the middle of the ERG, the
recording was repeated. Raw ERG signals were then normalized
between −1,000 and +1,000 and transformed within consecutive
epochs of 60 s. Continuous wavelet transforms are particularly
suitable for the analysis of discontinuous signals (Figure 1D;
Imm et al., 2023). We used the complex Morlet transform, as in
(Imm et al., 2023). The wavelet method implementation fieldtrip
toolbox based on MATLAB (Oostenveld et al., 2011) and custom-
made MATLAB scripts (MATLAB R2018; MathWorks) were used.
The resolutions for time and spectrum were 0.01 s and 0.05 Hz,
respectively. The power values obtained during the 1-min epochs
were then averaged for each animal or subject, then by species.
For each species, the standard error of the mean power spectra
was calculated. Scalograms were generated from power spectra of
20%-overlapping consecutive recording frames. Peak frequencies
were calculated in the previously described frequency ranges in
mice, rats, and humans (Imm et al., 2023). According to the main
peak frequencies detected in the power spectrum analysis, specific
time windows (as indicated in “Results” section) were taken from
the raw data to calculate the autocorrelograms with the ample
autocorrelation function from MATLAB.

Statistical analyses were performed using Matlab (Statistics and
Machine Learning Toolbox). Data are reported as mean ± SEM.
All data showed normal distribution and equal variance according
to the D’Agostino–Pearson omnibus and Levene tests, respectively.
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FIGURE 1

(A) Illustrative raw signals from light-evoked (top, the arrow represents the light flash) and from basal ERG (bottom) in the mouse, rat, human, and
zebrafish. Mock signals were normalized as explained in “Methods” section and filtered according to the calculated oscillatory components, i.e.,
0.1–10 Hz in mice and rats, and 0.1–2 Hz in humans. (B) Averaged normalized power spectra, from mice (n = 12; green), rats (n = 12; blue), humans
(n = 109; black), and zebrafishes (n = 4; orange), as indicated. Values, mean ± SEM (shaded areas). (C) Representative scalograms of spontaneous
retinal oscillations in the indicated frequency ranges in mice, rats and humans. Of note, an enlargement of the human scalogram in the 0.1–10 Hz
(dotted lines) is presented to better appreciate the infra-slow and delta-like activities. (D) Autocorrelograms of the spontaneous activity measured by
mock ERG showing 0.16, 1.1, and 2.3 Hz oscillations in mice, 0.12, 0.2, and 1.1 Hz oscillations in rats, and an illustrative 0.55, 10, and 25 Hz oscillation
in humans. (E) Peak frequency and (F) corresponding analysis of the infra-slow (asterisks and open squares), delta-like (open circles and triangles),
alpha/sigma/beta-like (stars), and beta-like (crosses) oscillations in mice, rats, and humans, as indicated. P values were calculated using a mixed
ANOVA and Bonferroni post hoc.
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Multigroup comparisons were therefore determined using a
mixed ANOVA and Bonferroni post hoc. P ≤ 0.05 was
considered significant.

3 Results

3.1 Time-frequency characteristics of
intrinsic retinal oscillations in mice, rats,
humans, and zebrafish under
physiological conditions

We recently reported that mock ERG signals contain
spontaneous oscillations that have predictive value for obesity
and diabetes models and for the modifiable risk factors of type
2 diabetes (Imm et al., 2023). Our initial study reported mock
ERGs in mice, rats, and humans, but we did not compare their
time-frequency characteristics. Furthermore, we explored whether
D. rerio displays such activity, since is a powerful experimental
model for biomedical studies, including those affecting the nervous
system directly (Espino-Saldaña et al., 2019).

As a positive control, all species responded to a light flash with
a classical biphasic ERG (Figure 1A). Since the characterization
of mock ERG waveforms is in its infancy, we next focused on the
most frequently used feature, that is frequency. Spectral analysis of
mock ERG signals (Figure 1A) shows the main peaks of activity in
the infra-slow (<0.5 Hz; Nayak and Anilkumar, 2020; Kropotov,
2022) in mice, rats and humans, and also in the delta-like (0.5–
4 Hz; Nayak and Anilkumar, 2020) wave range in mice and
rats. In contrast, zebrafish showed absence of peaks (Figure 1B).
Scalograms showed discontinuous activity in mice, rats, and
humans (Figure 1C). In these latter, basal activity extended to the
alpha (8–12 Hz), sigma (12–16 Hz), and beta (13–30 Hz) bands,
but at lower power (Figures 1B, C; Imm et al., 2023). Importantly,
autocorrelograms showed rhythmicity in the infra-slow and delta-
like wave range in both mice and rats (Figure 1D). Similarly,
autocorrelation analysis in individual recordings from humans
showed rhythmicity in the infra-slow range, as well as in the
alpha/sigma (10–20 Hz) and beta (20–40 Hz) range (Figure 1D).
In summary, rodents and humans showed infra-slow oscillations
(0.14 ± 0.02 Hz in mice, 0.15 ± 0.02 and 0.3 ± 0.09 Hz in
rats, and 0.59 ± 0.22 Hz in humans), there were two delta-like
oscillations in mice (1.19 ± 0.21 and 2.30 ± 0.19 Hz) and one
in rats (1.14 ± 0.19 Hz), and faster (10–20 Hz -alpha/sigma/beta-
like- and 20–40 Hz -beta-like-) oscillations in humans (Figure 1E).
The comparison of the peak frequencies between species revealed
similarities and differences in both the infra-slow and delta-like
range. The slowest infra-slow waves had similar peak frequencies
in mice and rats, the second infra-slow wave in rats was faster
than the infra-slow wave in mice, but slower than the human one
(Figure 1F). In the delta-like range, the slowest wave had a similar
frequency in mice and rats, only the mouse had a faster infra-slow
wave (2.30± 0.19 Hz) (Figure 1F).

In view of these data, we wondered if differences could
also occur between strains of a same specie. As shown in
Supplementary Figure 1A, the basal ERG signals from the Wistar,
Long Evans, and RCS+/+ rats contained two infra-slow waves, one
delta-like oscillation for the Wistar and Long Evans rats, and two
for the RCS+/+. Their peak frequency is similar in the infra-slow

range (0.15 ± 0.004, 0.16 ± 0.005, and 0.16 ± 0.18 Hz for the
slowest in Wistar, Long Evans, and RCS+/+ rats, respectively, and
0.31 ± 0.01, 0.33 ± 0.02, and 0.39 ± 0.04 Hz for the fastest in
Wistar, Long Evans, and RCS+/+ rats, respectively; Supplementary
Figure 1B). The delta-like waves peaked at a similar frequency in
Wistar and Long Evans rats (1.13 ± 0.04 and 1.23 ± 0.04 Hz,
respectively), but not in RCS+/+ rats, which showed two peaks
(0.86 ± 0.01 and 1.71 ± 0.01 Hz) that were slower and faster,
respectively, compared with the delta-like activity in the Wistar
and Long Evans strains (Supplementary Figure 1B). Of note, the
infra-slow oscillations were observed in one third of mice and
half of the rats.

3.2 Intrinsic retinal oscillations in models
of retinal and non-retinal
neurodegeneration

As a logical following step, we examined the basal oscillations
in a model of retinal dystrophy using RCS−/− rats, which
have a Merkd mutation that causes progressive degeneration of
photoreceptors (Fletcher et al., 2011). RCS−/− rats displayed an
ERG reduction of ERG in response to photic stimulation compared
to RCS+/+ rats (Figure 2A). Also, RCS−/− rats showed an altered
pattern of intrinsic retinal oscillations (Figure 2B) mainly in the
fastest delta-like range (δ2; Figure 2C). The peak frequency of the
latter was decreased compared to that of RCS+/+ rats (Figure 2C).

We complemented our study by testing the cuprizone-induced
demyelination model for multiple sclerosis (MS) in mice (Kipp
et al., 2017), in which the demyelinating lesion of the white matter,
including the optic nerve, is accompanied by some functional
and histopathological manifestations, including axonal damage and
a widespread gray matter pathology (Pfeifenbring et al., 2015;
Herranz et al., 2016; Bernal-Chico et al., 2020). Exposure to
cuprizone for 3 weeks reduced and slowed the light flash-evoked
ERG (Figure 2D), as well as the spontaneous activity of the retina
(Figure 2E). Particularly, the slow delta-like wave was slowered
(1.20± 0.18 vs. 1.0± 0.05 Hz in control and cuprizone-treated eyes,
respectively, Figure 2F).

4 Discussion

ERG is not only applicable to the retinopathy diagnosis,
it also plays an increasing role in understanding the natural
history of neuroglial dysfunction in several retinopathies and
neurodegenerative diseases, and given the clinical knowledge it
provides, ERG is likely to become an attractive outcome measure
for future clinical trials targeting neurogliovascular preservation. It
is therefore important to better characterize and explain all types
of signals that can be examined through this technique and to
compare their features between species.

4.1 Intrinsic retinal oscillations may share
components between mammals

Mock ERG activity reflects the temporal summation of the
synchronous activity of millions of retinal neurons that are spatially
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FIGURE 2

Illustrative raw signals from light-evoked (top, the arrow represents the light flash) and from basal ERG (bottom) in the (A) RCS/RCS+/+ and RCS−/−

rats and (D) control and cuprizone-treated mice, as indicated. Mock signals were normalized and filtered (0.1–10 Hz). (B,E) Corresponding averaged
normalized wavelet power spectra; RCS/RCS+/+ (n = 3; blue) and RCS−/− (n = 4; light blue) rats; control (n = 6; green) and cuprizone-treated
(n = 3; light green) mice. Values, mean ± SEM (shaded areas). (C,F) Corresponding peak frequency analysis of the infra-slow (I.S.1 and I.S.2 for low
and high infra-slow, respectively) and delta-like (δ1 and δ2 for low and high delta-like, respectively) oscillations. P values were calculated using a
mixed ANOVA and Bonferroni post hoc.

organized (Webvision, 2023). Analyzing and interpreting baseline
ERG has a certain degree of complexity. Our observations show
that the “normal” mock ERG has a broad range of physiological
variability in mammals. Several variables including organism’s
age, state of consciousness, physical and mental activity, and
the presence of different biological, environmental stimuli, and
pharmacological agents can affect nervous waveforms. We can
assure that age was comparable within the same species, with the
exception of humans, that humans were awake, that no drugs were
administered to any species, and that biological and environmental
stimuli were similar for rodents. Rodents’ anesthesia may account
for the differences with humans, as well as major anatomical-
functional differences in retinal physiology. However, the inter-
strain differences remain to be studied.

The physiological meaning of intrinsic retinal oscillations is
not yet clear, but they are likely to have clinical relevance, since
we found that they change during diseases (Imm et al., 2023).
Even if mice and rats display delta-like oscillations at similar
peak frequencies and exhibit infra-slow oscillations similar to
humans, we ignore if they correspond to the same phenomenon.
It is also intriguing that mice show an additional faster delta-like
oscillations compared to rats, and that rats display two infra-slow
components. The lack of intrinsic retinal oscillations in zebrafish
was somewhat unexpected, since their vision share common
features with humans (Stella et al., 2021) and neural oscillations
are among the most conservatively preserved phenotypes, at least
in mammals (Buzsáki et al., 2013). So, perhaps it is the recording
conditions in zebrafish that are distinct from those of mammals,
as well as their retinal physiology which, for example, unlike
mammals, undergo continuous proliferative activity throughout
life. Clearly, visual specialization in ocular patterns, large-scale
heterogeneity on the retinal surface, and local vascular patterns
make the retina of each species unique (Baden et al., 2020). In this
line, it is worth mentioning that if Müller glia is essential for retinal

circuits in rodents (Tworig and Feller, 2022), its multipotency in
zebrafish may involve a different functioning of the internal retinal
circuits (Angueyra and Kindt, 2018), which are supposed to be the
site of generation of spontaneous oscillations of the retina.

Alternatively, the discontinuous nature of the oscillatory field
potential of the retina that we measured also points out to
poor synchronicity between retinal cell ensembles responsible for
intrinsic oscillations, which may account for the lack of activity in
zebrafish (Neuenschwander et al., 1999).

Our observations raise additional questions, including how far
can the use of spontaneous ERG power spectrum be generalized if
its control pattern varies depending on the species and strains and
what are the neural mechanisms behind intrinsic retinal oscillations
and their changes in disease models.

4.2 The potential relevance of
understanding the properties of the
intrinsic retinal oscillations: a
bioelectronic perspective

It may still seem like a long way to go for this knowledge to lead
to technologies that stimulate or block retinal neuronal signaling
to affect specific molecular mechanisms, but retinal implants,
optogenetic and sonogenetic therapies are part of the current
panorama to restore vision (Ayton et al., 2020). We share the view
that the inclusion of the basic physiology underlying spontaneous
retinal activity, the study of which will be facilitated by the
availability of several experimental models, will lead to better visual
outcomes, especially for prosthetic vision. It has been envisioned
that altered intrinsic ERG oscillations represent neural signatures
specific for each neurodegenerative (retinal) disease (Simó et al.,
2020). Our data showing that RCS−/− rats and cuprizone-treated
mice show an altered pattern of basal retinal oscillations is a further
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step (Imm et al., 2023) in this direction. This altered pattern of
basal oscillations is concomitant to an impaired response to photic
stimulus, which validates the neuronal damage in the retina using
the well-established ERG technique and strengthens our postulate
that intrinsic slow oscillations observed in rodents and in humans
are altered in neurodegenerative pathologies not only of the retina
but also of the rest of the nervous system. Nevertheless, studies at
earlier stages will be needed to prove that basal activity recorded
with ERG can help diagnose them at an early stage.

5 Conclusion

Our results show that infra-slow oscillations are common
to mammalian retinas and that neurodegenerative conditions
commonly associate with altered pattern of basal waves, which,
given that many previous studies that propose poblational neuronal
oscillations as biomarkers of brain functional integrity (Buzsáki
and Christen, 2016; Chan et al., 2021) present them as promising
indicators of retinal and systemic neurodegenerative dysfunctions.
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