
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00417-022-05786-4

RETINAL DISORDERS

Clinical‑genetic findings in a group of subjects with macular 
dystrophies due to mutations in rare inherited retinopathy genes

Juan C. Zenteno1,2   · Rocio Arce‑Gonzalez1 · Rodrigo Matsui3 · Antonio Lopez‑Bolaños4 · Luis Montes1 · 
Alan Martinez‑Aguilar3 · Oscar F. Chacon‑Camacho1,5

Received: 16 February 2022 / Revised: 3 July 2022 / Accepted: 22 July 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Purpose  To describe the results of clinical and molecular analyses in a group of patients suffering from inherited macular 
dystrophies, in which next-generation sequencing (NGS) efficiently detected rare causative mutations.
Methods  A total of eight unrelated Mexican subjects with a clinical and multimodal imaging diagnosis of macular dystro-
phy were included. Visual assessment methods included best corrected visual acuity, color fundus photography, Goldmann 
visual field tests, kinetic perimetry, dark/light adapted chromatic perimetry, full-field electroretinography, autofluorescence 
imaging, and spectral domain-optical coherence tomography imaging. Genetic screening was performed by means of whole 
exome sequencing with subsequent Sanger sequencing validation of causal variants.
Results  All patients exhibited a predominantly macular or cone-dominant disease. Patients’ ages ranged from 12 to 60 years. 
Three cases had mutations in genes associated with autosomal dominant inheritance (UNC119 and PRPH2) while the remain-
ing five cases had mutations in genes associated with autosomal recessive inheritance (CNGA3, POC1B, BEST1, CYP2U1, and 
PROM1). Of the total of 11 different pathogenic alleles identified, three were previously unreported disease-causing variants.
Conclusions  Macular dystrophies can be caused by defects in genes that are not routinely analyzed or not included in NGS gene 
panels. In this group of patients, whole exome sequencing efficiently detected rare genetic causes of hereditary maculopathies, and 
our findings contribute to expanding the current knowledge of the clinical and mutational spectrum associated with these disorders.
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Introduction

Inherited retinal dystrophies, the main cause of incurable 
familial blindness in the Western world, are a group of phe-
notypically and genetically heterogeneous conditions char-
acterized by progressive degeneration of photoreceptors 
and retinal pigment epithelial cells [1]. A large number of 
inherited retinal dystrophies primarily affect the macula, the 
part of the retina specialized for central vision and advanced 
visual function. The term hereditary macular dystrophies 
(HMDs) describes a group of retinopathies characterized 
by symmetrical and progressive central vision loss due to 
degeneration of the macula and the underlying retinal pig-
ment epithelium (RPE), with preferential damage of cones 
[2]. While HMDs can exhibit great phenotypic variability, 
they are characterized by funduscopic changes involving the 
macula and RPE, clinically significant loss of central vision, 
and gradual loss of acuity, color vision, and contrast sensi-
tivity [3]. Stargardt disease (STGD) is the most prevalent 
HMD with an estimated incidence of one in 10,000 [4, 5]. 
The typical presentation is an autosomal recessive form with 
onset between 7 and 12 years of age [6]. Classical STGD 
(OMIM #248200) is caused by biallelic mutations in the 
ABCA4 gene [7]. Another prevalent HRD is Best vitelliform 
macular dystrophy (Best disease, OMIM #153700), which is 
considered the second most common form of juvenile macu-
lar degeneration [8]. Best disease is caused by dominant 
mutations in the BEST1 gene [9].

According to RetNet (https://​sph.​uth.​edu/​retnet/​sum-​dis.​
htm, accessed in August 2021), there are currently more than 
50 identified genes associated with inherited maculopathies 
and/or with retinopathies with degeneration predominantly 
of the cone photoreceptors. Thus, providing a molecular 
diagnosis in HMDs is challenging due to the large numbers 
of causative genes.

The continuously increasing use of next-generation 
sequencing (NGS) for genetic analysis of a growing number 
of patients with HMD has not only allowed many of them 
to receive a precise molecular diagnosis, but has also ena-
bled the recognition of additional genes causing hereditary 
maculopathy such as CLN3 [10], CRB1 [11], TLCD3B [12], 
PRDM13 [13], MFSD8 [14], FBN2 [15], and DRAM2 [16], 
among others. NGS is rapidly becoming a practical first-
tier test as the cost decreases and performance improves, 
and its growing application in clinical settings offers the 
opportunity to detect mutations underlying rare inherited 
maculopathies.

Here, we describe the results of the clinical and molecu-
lar analyses in a group of patients suffering from inherited 
macular dystrophies in which whole exome sequencing effi-
ciently detected causative mutations in uncommon macu-
lopathy genes.

Material and methods

Clinical assessment

The protocol was approved by Institutional Review Board 
of the Institute of Ophthalmology “Conde de Valenciana” 
in Mexico City. All procedures followed the tenets of the 
Helsinki Declaration and patients gave written permission 
for their inclusion in the study. Participating subjects under-
went a complete eye examination including best corrected 
visual acuity (BCVA), color fundus photography, Goldmann 
visual field kinetic perimetry, dark/light adapted chromatic 
perimetry, full-field electroretinography (ERG), autofluores-
cence imaging (FAF), and spectral domain-optical coherence 
tomography (SD-OCT) imaging, as previously detailed [17]. 
Full-field ERG incorporated recommendations of the Inter-
national Society for Clinical Electrophysiology of Vision 
(ISCEV) were followed [18]. OCT images were acquired 
using a spectral-domain system (Heidelberg Spectralis OCT, 
Heidelberg Engineering, Heidelberg, Germany) and horizon-
tal and vertical line scans centered at the fovea were obtained.

Exome sequencing

Genomic DNA was extracted from peripheral blood leuko-
cytes from affected subjects using the QIAmp DNA Blood 
kit (Qiagen, Hilden, Germany). DNA quantification and 
purity were measured using a Qubit Fluorometer (Thermo 
Fisher Scientific, Waltham, MA, USA). Library prepara-
tion for exome sequencing was performed using the Agilent 
SureSelect Human All Exon V6 kit (Agilent Technologies, 
Santa Clara, CA, USA). DNA was fragmented and puri-
fied using an Agencourt AMPure XP kit (Beckman Coulter 
Genomics, Chaska, MN, USA). DNA fragment ends were 
repaired, and adaptor sequences were added to the 5′ and 3′ 
ends of all fragments. Subsequently, each library was puri-
fied, amplified, and hybridized to the SureSelect Human All 
Exon V6 probes. Index adaptors were ligated to the 5′ and 3′ 
ends of each sample. DNA fragments were amplified, and 
fragments from 250 to 350 bp were isolated. The quality of 
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the libraries was assessed through a Bioanalyzer 2100 (Agi-
lent Technologies). Lastly, 100 bp paired-end sequencing 
was performed using a HiSeq NGS platform (Illumina, San 
Diego, CA, USA). The average target region coverage for the 
samples was 98.2% at ≥ 50 × . Exome sequencing data was 
filtered using the Franklin platform (Genoox, Palo Alto, CA, 
USA) available at https://​frank​lin.​genoox.​com/​clini​cal-​db/​
home. Designation of pathogenic or likely pathogenic vari-
ants was carried out according to the American College of 
Genetics and Genomics guidelines [19]. Variants of clinical 
significance were confirmed using Sanger sequencing. Copy 
number variant (CNV) analyses were also conducted using 
the Franklin platform algorithm Rainbow.

Results

A total of eight unrelated Mexican subjects with a clinical 
and multimodal imaging diagnosis of macular dystrophy 
were included. Three individuals had a history of additional 
affected relatives while the remaining five were apparently 
sporadic cases. Patients’ age ranged from 12 to 60 years and 
five of them were male. Table 1 summarizes the multimodal 
imaging and ERG test results for all eight patients. Supple-
mentary Figs. 1 and 2 show ERG traces and visual fields for 
some of the patients. Three cases had mutations in genes 
associated with autosomal dominant inheritance (UNC119 
and PRPH2) while the remaining five cases had mutations 
in genes associated with autosomal recessive inheritance 
(CNGA3, POC1B, BEST1, CYP2U1, and PROM1). Of the 
total of 11 pathogenic alleles identified, three were previ-
ously unreported mutations. Table 2 summarizes the molec-
ular genetic findings in the cohort. Sanger sequencing traces 
of the identified variants are shown in Supplementary Fig. 3.

Patient #1

This is a 55-year-old male with a recent diagnosis of macular 
degeneration. He began noticing nyctalopia 3 years ago. His 
mother and a maternal aunt, both deceased, also had a mac-
ular degeneration diagnosis. He reported wearing glasses 
since the age of 10 and had a history of refractive surgery. 
At the present examination, his BCVA was 0.1 logMAR 
(0.8 Snellen decimal) in the right eye and 0.1 logMAR (0.8 
Snellen decimal) in the left eye. No systemic anomalies were 
recorded. Fundus examination disclosed bilateral macular 
drusen-like deposits (Fig. 1A–F). Visual field examination 
and ERG led to the diagnosis cone-rod dystrophy. Exome 
sequencing in this patient revealed a previously unreported 
heterozygous c.601G > T (p.Glu201Ter) mutation in the 
UNC119 gene.

Patient #2

This patient is a 60-year-old male complaining of blurry 
vision since infancy, color vision deficiency starting at 
15 years of age, and photophobia since the age of 30. No 
family history of visual diseases was reported and no sys-
temic anomalies were observed at physical examination. His 
BCVA was 0.69 logMAR (0.1 Snellen decimal) in the right 
eye and 0.84 logMAR (0.14 Snellen decimal) in the left eye. 
On fundus examination he had macular hyperpigmentation, 
macular folds and retinal sheen, posterior staphyloma and 
scleral crescent in the right eye, and hypopigmented macular 
dots in the left eye (Fig. 1G–L).

NGS analysis in this subject revealed two heterozygous 
variants in the CNGA3 gene: c.1541A > T (P.Asp514val) 
and c.1981C > A (p.Arg661Ser). Familial genetic analysis 
by Sanger sequencing demonstrated that both variants were 
in the trans configuration (i.e., biallelic mutations).

Patient #3

This is a 31-year-old female complaining of photophobia 
since the age of 10, dyschromatopsia from the age of 18, 
and visual loss at the age of 22. She had no family history 
of similar ocular disease. Systemic features were identified 
and included mild hearing loss and hyposmia. She had a 
history of hypercholesterolemia, hypertriglyceridemia, 
and hyperprolactinemia with galactorrhea. She developed 
an idiopathic intracranial hypertension episode at the age 
of 31 years that required ventriculoperitoneal shunt place-
ment. BCVA was 0.8 logMAR (0.16 Snellen decimal) in 
the right eye and 0.8 logMAR (0.16 Snellen decimal) in 
the left eye. Fundus examination showed a bilateral pale 
optic disk with normal cupping, a bilateral parafoveal ring 
of hyperpigmentation, and a peripapillary myelinated retinal 
nerve fiber layer in the left eye (Fig. 1M–R). Whole exome 
sequencing in this individual identified heterozygosity for 
the previously unreported c.144delG (p.Lys48AsnfsTer16) 
and for the previously reported c.101-3 T > G mutations in 
the POC1B gene. Sanger sequencing in available relatives 
confirmed that POC1B variants were in separate alleles (i.e., 
compound heterozygosity).

Patient #4

A 12-year-old female patient born from a first-cousin mar-
riage was evaluated at the age of 11 years because of blurry 
vision. BCVA was 0.5 logMAR (0.32 Snellen decimal) in 
the right eye and 0.3 logMAR (0.5 Snellen decimal) in the 
left eye. Fundus examination showed a hyperemic optic disk 
with normal cupping and parafoveal ring hyperpigmentation 
and hypopigmentation in the middle peripheral retina, bilat-
erally (Fig. 2A–F). A previously unreported homozygous 
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Table 2   Molecular findings in the cohort of macular dystrophy patients

AD, autosomal dominant; AR, autosomal recessive; *American College of Medical Genetics and Genomics
ACMG criteria:
Very strong (PVS):
1. Null variant (nonsense, frameshift, canonical ± 1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a 
known mechanism of disease
Strong (PS):
1. Same amino acid change as a previously established pathogenic variant regardless of nucleotide change
2. De novo (both maternity and paternity confirmed) in a patient with the disease and no family history
3. Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product
4. The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls
Moderate (PM):
1. Located in a mutational hot spot and/or critical and well-established functional domain (e.g., active site of an enzyme) without benign varia-
tion
2. Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggrega-
tion Consortium
3. For recessive disorders, detected in trans with a pathogenic variant
4. Protein length changes as a result of in-frame deletions/insertions in a non-repeat region or stop-loss variants
5. Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before
6. Assumed de novo, but without confirmation of paternity and maternity
Supporting (PP):
1. Cosegregation with disease in multiple affected family members in a gene definitively known to cause the disease
2. Missense variant in a gene that has a low rate of benign missense variation and in which missense variants are a common mechanism of dis-
ease
3. Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, 
etc.)
4. Patient’s phenotype or family history is highly specific for a disease with a single genetic etiology
5. Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evalua-
tion

Patient # Gene Zygosity Disease [OMIM]/
inheritance

c.DNA change Protein change ACMG* classification 
(criteria)

Previously 
reported 
(ref.)

1 UNC119 Heterozygous Cone-rod dystrophy 
[N/A]/AD

c.601G > T p.Glu201Ter Likely pathogenic 
(PVS1, PM2, PP3)

No

2 CNGA3 Compound heterozy-
gous

Achromatopsia 2 
[#216900]/AR

c.1541A > T
c.1981C > A

p.Asp514Val
p.Arg661Ser

Likely pathogenic 
(PM1, PM2, PP2, 
PP3)

Likely pathogenic 
(PM2, PP2, PP3, 
PP5)

Yes [20]
Yes [21]

3 POC1B Compound heterozy-
gous

Cone-rod dystrophy 20 
[#615973]/AR

c.144delG (allele 1)
c.101-3 T > G (allele 

2)

p.Lys48AsnfsTer16
Splicing

Pathogenic (PVS1, 
PM2, PP5)

Likely pathogenic 
(PM2, PP3, PP5)

No
Yes [22]

4 BEST1 Homozygous Bestrophinopathy, 
recessive [#611809]/
AR

c.70 T > C p.Trp24Arg Likely pathogenic 
(PM1, PM2, PM5, 
PP3, PP2)

No

5 CYP2U1 Homozygous Spastic paraplegia 56 
[#615030]/AR

c.1168C > T p.Arg390Ter Pathogenic (PVS1, 
PM2, PP5)

Yes [23]

6 PRPH2 Heterozygous Macular dystrophy 
[#169150; #608161]/
AD

c.749G > A p.Cys250Tyr Likely pathogenic 
(PM1, PM2, PM5, 
PP2, PP3, PP5)

Yes [24]

7 PROM1 Compound heterozy-
gous

Macular dystrophy 2 
[#608051]; cone-
rod dystrophy 12 
[#612657]/AD, AR

c.1354dupT (allele 1)
c.1984-1G > T (allele 

2)

p.Tyr452fs
Splicing

Pathogenic (PVS1, 
PS4, PM2, PP5)

Pathogenic (PVS1, 
PM2, PP5)

Yes [25]
Yes [26]

8 PRPH2 Heterozygous Macular dystrophy 
[#169150; #608161]/
AD

c.424C > T p.Arg142Trp Pathogenic (PM1, 
PM2, PM5, PP2, 
PP5)

Yes [27]
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c.70 T > C (p.Trp24Arg) mutation in the BEST1 gene was 
recognized through NGS analysis in this patient. Parental 
DNA analysis evidenced that both healthy parents were het-
erozygous carriers of the c.70 T > C variant in BEST1.

Patient #5

This 39-year-old male complained of central blurry vision 
and nyctalopia since he was 18. He had a 37-year-old sister 

Fig. 1   Funduscopic, autofluo-
rescence, and SD-OCT charac-
teristics of patient #1 carrying 
a mutation in UNC119 (A–F), 
patient #2 carrying CNGA3 
compound heterozygous muta-
tions (G–L), and patient #3 
carrying POC1B compound 
heterozygous mutations (M–R). 
Detailed description is provided 
in Table 1
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with similar symptomatology and ophthalmological find-
ings. His parents were third-degree cousins (Supplemen-
tary Fig. 4). BCVA was 0.6 logMAR (0.25 Snellen deci-
mal) in the right eye and 0.7 logMAR (0.2 Snellen decimal) 
in the left eye. Fundus examination showed a macular scar 
and hyperpigmentation surrounded by a hypopigmented 
ring in both eyes (Fig. 2G–L). No systemic anomalies or 

neurological symptoms were recorded on examination. 
Exome sequencing allowed the recognition of a previously 
reported homozygous c.1168C > T (p.Arg390Ter) mutation 
in the CYP2U1 gene.

Fig. 2   Funduscopic, auto-
fluorescence, and SD-OCT 
characteristics of patient #4 
carrying a homozygous BEST1 
mutation (A–F), patient #5 
with a homozygous CYP2U1 
mutation (G–L), and patient 
#8 carrying a PRPH2 mutation 
(M–R). Detailed description is 
provided in Table 1
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Patient #6

This 37-year-old male complained of progressive bilateral 
loss of visual acuity for at least 5 years. No family history 
of visual defects was recorded. His BCVA was 0.1 logMAR 
(0.8 Snellen decimal) in both eyes. During funduscopy, mac-
ular hypopigmentation and hyperpigmented spots with para-
foveal confluence were observed bilaterally. Genetic analysis 
in this subject identified a previously reported c.749G > A 
(p.Cys250Tyr) heterozygous mutation in the PRPH2 gene.

Patient #7

This 42-year-old male has complained of blurry vision since 
childhood. Since the age of 22, he has had progressive visual 
loss with no improvement with the use of eyeglasses. Pho-
tophobia, inability to distinguish certain shades of color, 
and decreased central vision were also referred. BCVA was 
1.82 logMAR (0.63 Snellen decimal) in the right eye and 
1.82 logMAR (0.63 Snellen decimal) in the left eye. Fun-
dus examination showed macular retinochoroidal atrophy 
patches surrounded by discrete yellowish, round, and pis-
ciform flecks and peripapillary atrophy in both eyes. NGS 
analysis disclosed compound heterozygosity for two previ-
ously described mutations in the PROM1 gene: c.1354dupT 
(p.Tyr452fs) and c.1984-1G > T. Familial Sanger sequencing 
analysis confirmed the trans configuration of the variants.

Patient #8

A 47-year-old female complaining of metamorphopsia since 
several months ago with no other ocular symptoms was eval-
uated. She had received a previous diagnosis of neovascular 
membrane secondary to age-related macular degeneration 
and was treated with a dose of intravitreal aflibercept in the 
left eye. No family history related to a similar eye condition 
was recorded, although her late father had worn high-grade 
eyeglasses. At present, her BCVA was 0.9 logMAR (0.125 
Snellen decimal) in the right eye and 0.17 logMAR (0.63 
Snellen decimal) in the left eye. Fundus examination showed 
a macular scar on the left eye, and atrophy and drusen in 
both eyes (Fig. 2M–R). In this subject, exome sequencing 
evidenced a previously reported c.424C > T (p.Arg142Trp) 
heterozygous mutation in the PRPH2 gene.

Discussion

As a retinal dystrophy subtype, maculopathies are of special 
interest as they are consistently associated with early and clin-
ically relevant central vision deficiency. Stargardt disease and 
Best macular dystrophy, the two most commonly occurring 
monogenic maculopathies, exhibit high allelic heterogeneity, 

as approximately 1700 different disease-associated mutations 
in ABCA4 and approximately 380 in BEST1 genes have been 
identified, according to the Human Gene Mutation (HGMD, 
http://​www.​hgmd.​cf.​ac.​uk/) and ClinVar (https://​www.​ncbi.​
nlm.​nih.​gov/​clinv​ar/) databases, accessed on August 2021. 
However, MD can be caused by defects in rare genes that are 
not routinely analyzed or not included in NGS gene panels. 
For example, POC1B and CYP2U1 genes are not included 
in a panel of 2742 genes related to monogenic diseases that 
we had used previously to characterize causal mutations in a 
large cohort of retinal dystrophy patients [28].

In this work, we presented the phenotypic and genetic 
findings in a group of eight unrelated Mexican individuals 
suffering from different forms of retinal disease arising from 
mutations in known maculopathy genes. Exome sequencing 
allowed the recognition of the molecular cause of the disease 
in all cases, demonstrating the utility of this approach for 
genetic diagnosis in heterogeneous disorders. While WES 
has proven to be effective for molecular diagnosis of geneti-
cally heterogeneous diseases, its limitations include the 
inability to identify noncoding regulatory or deep intronic 
regions as well as genomic structural variation.

Of the 11 pathogenic alleles identified, three were pre-
viously unreported mutations, thus expanding the current 
knowledge of the molecular spectrum causing inherited 
maculopathies.

In patient #1, a causal c.601G > T (p.Glu201Ter) het-
erozygous variant at the UNC119 gene was identified. 
UNC119 encodes a protein localized to the photoreceptor 
synapses in the outer plexiform layer of the retina, where 
it has been suggested to play a role in the mechanism of 
photoreceptor neurotransmitter release through the synaptic 
vesicle cycle [29]. Previously, Kobayashi et al. recognized a 
UNC119 heterozygous p.Lys57Ter nonsense mutation in an 
adult Japanese subject with cone-rod dystrophy. This patient 
complained of poor night vision, defective color vision, and 
photophobia from the age of 40 years and exhibited macu-
lar atrophy, pericentral ring scotomas, and abnormal ERG 
consistent with cone-rod dystrophy [30]. Interestingly, trans-
genic mice carrying an identical p.Lys57Ter mutation exhib-
ited a progressive decrease in the ERG b-wave associated 
with retinal degeneration with prominent degeneration of the 
synapses [30]. Huang et al. reported a child suffering from 
photophobia and exhibiting atrophy and pigmentation depos-
its of central macula in whom a heterozygous p.Asp87Asn 
UNC119 missense mutation was demonstrated [31]. More 
recently a c.7delG (p.Val3*) was reported in a family with 
dominant retinitis pigmentosa [32]. Thus, the likely patho-
genic p.Glu201Ter UNC119 variant described here is the 
fourth retinopathy-related UNC119 mutation, supporting 
the involvement of this gene in hereditary macular disease.

In patient #2, compound heterozygosity for the 
c.1541A > T (p.Asp514Val) and c.1981C > A (p.Arg661Ser) 
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variants in the CNGA3 was demonstrated. CNGA3 encodes 
the alpha subunit of the cone photoreceptor cyclic nucleo-
tide-gated (CNG) channel, which is a crucial component 
of the phototransduction cascade in cone outer segments 
[33]. Mutations in CNGA3 account for approximately 25% 
of either complete or incomplete cases of achromatopsia, an 
uncommon, autosomal recessive inherited retinal condition 
manifesting shortly after birth or early infancy and character-
ized by reduced visual acuity, nystagmus, photophobia, and 
very deficient or absent color vision [34, 35]. Achromatopsia 
can result from mutations in at least six genes (i.e., CNGA3, 
CNGB3, GNAT2, PDE6C, PDE6H, and ATF6), which are 
crucial for phototransduction in cones [24, 36].

In patient #3, compound heterozygosity for c.101-3 T > G 
(splicing) and c.144delG (p.Lys48AsnfsTer16) mutations 
in the POC1B gene was demonstrated. POC1B encodes a 
protein required for centriole integrity, basal body stabil-
ity, and ciliogenesis of the photoreceptors [37, 38]. To date, 
24 sporadic or familial macular dystrophy cases carrying 
biallelic POC1B mutations have been reported (see the 
supplementary file for references). In virtually all cases, a 
cone dystrophy phenotype is observed with decreased cen-
tral vision, early-onset photophobia and dyschromatopsia, 
unrecordable ERG photopic responses, and disruption of 
the ellipsoid zone on OCT. Most individuals carrying bial-
lelic POC1B mutations have normal funduscopic appear-
ance, even at adult ages. POC1B mutations p.Thr119Ile and 
pArg452Gln are frequent in Japanese patients [39] while 
mutation p.Arg106Pro has been identified in families from 
the Middle East [40, 41]. Previous in vitro studies indicated 
that the c.101-3 T > G variant in POC1B produces two aber-
rant transcripts that are out-of-frame and would cause a pre-
mature truncation of the protein [22].

A homozygous c.70 T > C (p.Trp24Arg) mutation in 
BEST1 was demonstrated in patient #4. Genetic defects in 
BEST1 cause a variety of retinal phenotypes, particularly 
autosomal dominant Best disease, as well as autosomal dom-
inant vitreoretinochoroidopathy and microcornea, rod-cone 
dystrophy, cataract, and posterior staphyloma syndrome 
(OMIM #193220), retinitis pigmentosa (OMIM #613914), 
and autosomal recessive bestrophinopathy (ARB) (OMIM 
#611809) (reviewed in [42]). ARB patients exhibit multi-
focal yellow subretinal deposits, subretinal fluid, macular 
edema, hyperopia with short axial-length, and angle closure 
[43, 44]. Thus, the observed phenotype in our patient is fully 
compatible with ARB.

Patient #5 harbored a homozygous c.1168C > T 
(p.Arg390Ter) mutation in CYP2U1, a gene encoding for 
protein P450, an enzyme involved in the hydroxylation of 
long chain fatty acids and phospholipid degradation [45]. 
CYP2U1 mutations underlie spastic paraplegia 56 (SPG56), 
an autosomal recessive neurodegeneration characterized by 
early-onset progressive lower-limb spasticity and weakness 

[46]. It is noteworthy that a pigmentary degenerative macu-
lopathy has been observed as part of the SPG56 phenotype 
[23]. No neurological symptoms were recognized in our 
patient carrying the p.Arg390Ter variant nor in his affected 
sister, and this observation is in agreement with recent data 
indicating that CYP2U1 mutations can cause maculopa-
thy without SPG56 neurological signs [Vaclavik V, et al. 
IOVS 2019;60:ARVO E-Abstract 2930]. The CYP2U1 
p.Arg390Ter mutation described here is identical to that 
demonstrated in a familial SPG56 Italian pedigree [23]. 
Thus, available evidence supports that CYP2U1 can be also 
considered as an isolated maculopathy gene.

Heterozygous mutations in the PRPH2 gene were dem-
onstrated in patients #6 (c.749G > A; p.Cys250Tyr) and #8 
(c.424C > T; p.Arg142Trp). PRPH2 encodes a photorecep-
tor-specific tetraspanin glycoprotein, PRPH2 (also known as 
peripherin/RDS), a main structural component of the pho-
toreceptor outer segment [47]. Disease-causing variants in 
PRPH2 are associated with a diversity of phenotypes includ-
ing cone-rod dystrophy, Stargardt disease, pattern dystrophy, 
and retinitis pigmentosa. Patients with PRPH2-related MD 
usually exhibit various hypo- or hyper-pigmented regions 
that appear as focal or multi-focal yellow, orange, or gray 
spots on the fundus [48]. A recent survey indicated that there 
are up to 252 different mutations in this gene associated with 
diverse retinal phenotypes [49].

Patient #7 was found to be compound heterozygous for 
mutations c.1354dupT (p.Tyr452Leufs*13) and c.1984-
1G > T and in PROM1. PROM1 encodes prominin-1, a 
member of a family of 5-transmembrane domain proteins 
with a critical role in disk morphogenesis and autophagy 
of the retinal pigment epithelium [50]. According to the 
HGMD public database and ClinVar (accessed in August 
2021), there are at least 70 distinct disease-causing vari-
ants in PROM1 underlying a spectrum of retinal conditions, 
particularly autosomal dominant-cone-dominant disease 
including macular dystrophy, cone-rod dystrophy, and 
Stargardt-like macular dystrophy. Although variable, the 
PROM1-associated phenotype can include severe macular 
involvement with peripheral bone-spicule degeneration [51], 
atrophic macular changes with foveal sparing, and general-
ized cone dysfunction on ERG [52]. In the patient reported 
here, the identification of biallelic PROM1 mutations indi-
cated a diagnosis of recessive cone-rod dystrophy type 12 
(OMIM #612657).

In summary, we presented the clinical-genetic findings 
in a group of MD patients in which exome sequencing effi-
ciently identified causal mutations in known maculopathy 
genes. Our results expand the current knowledge of the 
allelic spectrum linked to monogenic maculopathies.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00417-​022-​05786-4.
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