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Abstract 
Background We investigated whether the photopic 
negative response (PhNR) in the electroretinogram 
(ERG) was affected in Parkinson’s disease (PD) 
patients and whether it was associated with retinal 
changes on optical coherence tomography (OCT).
Methods Thirty-two patients with PD and 31 age 
and sex-matched healthy controls from a single ter-
tiary centre were included in the study. Hoehn and 
Yahr scale scores and the presence of REM sleep 
behaviour were recorded. PhNR, a-wave and b-wave 
responses in photopic ERG (red on blue background) 
and retinal layer thicknesses in OCT were obtained.
Results The mean age was 61 ± 10.4 in the PD 
group (female/male: 18/14) and 60.9 ± 7 in the con-
trol group (female/male: 18/13). The amplitudes 
of the PhNR, a- and b-waves in the ERG were sig-
nificantly decreased in the PD group, but the implicit 
times were not significantly different. BCVA was 
significantly correlated with Hoehn and Yahr scores 
(p < 0.001, r = −  0.596). There was a significant 
correlation between BCVA and a-wave ampli-
tude (p = 0.047, r = −  0.251). On OCT analysis, the 

thickness of the nasal INL was increased, and the 
temporal and inferior OPL and temporal peripapillary 
RNFL were decreased in the PD group compared to 
healthy controls (p = 0.032, p = 0.002, p = 0.016 and 
p = 0.012, respectively).
Conclusion This study demonstrated reduced 
a-wave, b-wave and PhNR-wave amplitudes on ERG 
measurements in PD patients. These findings suggest 
that the whole ERG response, not just the PhNR, is 
attenuated in patient with PD, suggesting a possible 
involvement of the visual system in the disease.

Keywords Photopic negative response · 
Electroretinography · Optical coherence tomography · 
Parkinson’s disease · ERG

Introduction

Parkinson’s disease (PD) is a neurodegenerative dis-
ease characterised by loss of dopaminergic neurons in 
the substantia nigra and associated motor dysfunction. 
Functional visual impairment and structural retinal 
changes, particularly in the inner retinal layers, have 
been reported in PD [1–4]. Degeneration of dopa-
minergic cells and the deposition of phosphorylated 
α-synuclein in the retina, similar to Lewy bodies in 
the brain, have been shown histologically in patients 
with PD [5–7]. Deterioration of retinal ganglion cells 
(RGCs) and the retinal nerve fibre layer (RNFL), 
which is composed of RGC axons, has been shown 
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in PD using optical coherence tomography in previ-
ous studies [8–10]. In addition, it has been observed 
that there is a decrease in PERG responses caused by 
dopaminergic deficiency in the retina [11, 12].

The photopic negative response (PhNR) is a slow 
negative component of the photopic full-field elec-
troretinogram (ERG) that originates predominantly 
from the inner retina and mainly from RGCs [13]. To 
obtain larger responses, the PhNR is recorded with 
red flashes on a rod-suppressing blue background 
[14]. The PhNR has been shown to be reduced in 
glaucoma, optic atrophy, anterior ischaemic optic 
neuropathy, compressive optic neuropathy, optic 
neuritis and preclinical Alzheimer’s disease [15–18]. 
Degeneration of melanopsin-expressing, human, 
intrinsically-photosensitive retinal ganglion cells has 
been proposed to cause sleep and circadian rhythm 
disturbances in PD [19]. Rapid eye movement (REM) 
sleep behaviour disorders are common in PD. In a 
meta-analysis, the prevalence of REM sleep disorder 
in PD was estimated to be 42% (95%CI: 37–47%) [20, 
21]. In a large series comparing PD patients with and 
without REM sleep disorder, the Hoehn Yahr score 
was found to be significantly higher in PD with REM 
sleep disorder [22]. REM sleep disorder is consid-
ered a possible marker of more widespread brainstem 
pathology [23]. Therefore, it remains to be investi-
gated whether RGC function, as measured by PhNR, 
is additionally affected in PD patients with REM 
sleep disorders.

This study aimed to investigate whether PhNR 
was affected in patients with PD and whether it was 
associated with retinal changes on optical coherence 
tomography (OCT). The secondary aim was to com-
pare PhNR and OCT findings between PD patients 
with and without REM sleep behaviour disorder.

Methods

All procedures performed in human participants were 
in accordance with the ethical standards of the Erci-
yes University Local Ethics Committee and with the 
1964 Helsinki declaration and its subsequent amend-
ments or comparable ethical standards. The study 
protocol was approved by Erciyes University Local 
Ethics Committee (No: 2021/566). Written informed 

consent was obtained from all individual participants 
included in the study.

Participants

Thirty-two PD patients and 31 age and sex-matched 
healthy controls were included in the study. One eye 
of each participant was randomly selected for statis-
tical analysis. The PD patients were followed up at 
the Neurology Department of Erciyes University. 
The disease severity scores of the PD patients were 
recorded according to the Hoehn and Yahr scale [24]. 
The presence of REM sleep behaviour disorder was 
also recorded by interviewing both the patient and the 
spouse. The Turkish version of REM sleep behaviour 
disorder screening questionnaire was used for evalua-
tion [25]. Five points and above on the questionnaire 
was accepted as positive. All patients were taking 
medication for PD. Systemic and neurological exclu-
sion criteria for the PD group were: diabetes mellitus, 
history of a cerebrovascular incident, alcoholism or 
any other drug abuse, history of severe head trauma, 
deep brain stimulation, history of malignancy, his-
tory of demyelinating disease, severely uncooperative 
patients, severe head tremor preventing reliable imag-
ing, and use of sedatives. The exclusion criteria for 
the control group were any systemic disease or medi-
cation. Ocular exclusion criteria for both groups were: 
best-corrected visual acuity (BCVA) less than 0.3 
decimal (Snellen), cataract surgery within 6 months, 
any vitreoretinal surgery, retinal and macular pathol-
ogy, congenital or acquired optic neuropathy, severe 
media opacities preventing retinal examination and 
imaging, history of ocular trauma, and refractive 
error greater than 6 diopters of spherical equivalent.

Ophthalmologic examination and imaging

All participants underwent a complete ophthalmo-
logic examination including slit-lamp examination, 
intraocular pressure (IOP) measurement, refraction, 
BCVA, fundus examination and OCT. OCT imag-
ing of the macula was performed using a Spectralis 
OCT (Heidelberg Engineering, Germany). Auto-
matic retinal layer segmentation was performed with 
the Spectralis software (version 6.3.3.0). The retinal 
layers included the retinal nerve fibre layer (RNFL), 
ganglion cell layer (GCL), inner plexiform layer 
(IPL), inner nuclear layer (INL), outer plexiform layer 
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(OPL), outer nuclear layer (ONL) and retinal pig-
ment epithelium (RPE). The retinal layers were ana-
lysed according to the ETDRS subfields, which were 
central 1  mm, superior, temporal, inferior and nasal 
subfields between 1 and 3  mm circles. Peripapillary 
retinal nerve fibre layer (RNFL) thicknesses (global, 
nasal, temporal, inferonasal, inferotemporal, supero-
nasal and superotemporal) were also measured auto-
matically with the OCT software. Macular and peri-
papillary retinal layer analysis is shown in Fig. 1.

Electroretinography and photopic negative response

In the present study, protocol for the PhNR 
(Metrovision Monpack 3, Metrovision, France) 
was performed according to the approved 

extended  protocol of the International Society for 
Clinical Electrophysiology of Vision (ISCEV) [14]. 
Pupils were maximally dilated (7 to 9 mm in diam-
eter) with tropicamide (1%) and phenylephrine 
hydrochloride (2.5%). After 10  min of adapta-
tion to photopic conditions, a topical anaesthetic 
(0.5% proparacaine hydrochloride) was applied to 
the eyes before placement of a single-use unipo-
lar gold-based contact lens active electrode (ERG 
Jet, Metrovision, Perenchies, France). A reference 
electrode was placed near each orbital rim, with 
the skin  temporal to the outer canthus used as the 
reference electrode for the corresponding eye. The 
stimulus duration was less than 5 ms red (630 nm) 
flashes (1.7  cd.s/m2) on a rod-suppressing blue 
(465  nm) background (8  cd.s/m2). The inter-flash 

Fig. 1  Segmentation of retinal layers in horizontal scans of the 
fovea was performed automatically. Mean retinal layer thick-
nesses were analysed in 5 sectors (temporal, inferior, nasal, 

superior and central). Mean peripapillary RNFL thickness was 
analysed in 6 sectors (superonasal, nasal, inferonasal, infer-
otemporal, temporal and superotemporal)
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interval was 500 ms. Electrical signals were ampli-
fied 1000 times and digitised. The signal cut-off 
frequency was between 0.3 Hz and 300 Hz and an 
average of 100 responses was used. Previous stud-
ies have confirmed that this colour combination is a 
good stimulus for eliciting the PhNR [13, 26]. The 
amplitudes and implicit times of a-wave, b-wave 
and PhNR were recorded. The fellow eye was cov-
ered during the recording of the corresponding eye.

The first negative wave is referred to as the 
a-wave and the first positive wave after the a-wave 
is referred to as the b-wave. The amplitude of the 
a-wave was measured from the baseline to the 
negative trough, and the amplitude of the b-wave 
was measured from the trough of the a-wave to the 
following peak. After the i-wave, which is the Off-
pathway derived positive deviation in the descend-
ing arm of the b-wave, the negative wave occur-
ring in the 65–75 ms interval was evaluated as the 
PhNR. The PhNR amplitude was measured from 
the baseline to the minimum point in the trough. 
The implicit times were defined as the time from 
light onset to wave peak. Figure 2 shows the ERG 
waveform and its components.

Statistical analysis

Statistical analysis was performed using SPSS soft-
ware (IBM, version 18). The normality of the data 
was tested using the Shapiro–Wilk test. The chi-
squared test was used for comparisons of nominal-
ordinal variables. The Mann–Whitney U test was used 
for comparisons between independent variables that 
were not normally distributed. Independent sample 
t-test was used for normally distributed data. Correla-
tions between parameters were tested using Pearson’s 
test for normally distributed data and Spearman’s test 
for non-normally distributed data. Receiver operat-
ing characteristic (ROC) analysis was performed with 
MedCalc (version 20). ROC was performed for the 
diagnostic value of a-wave, b-wave and PhNR ampli-
tudes in PD and the Area under the curve (AUC) 
value was obtained. A p-value of less than 0.05 was 
accepted as the statistical level of significance.

Results

Thirty-two patients (18 female) with PD and 31 age- 
and sex-matched healthy controls (18 female) were 
included in the study. Demographic data, intraocular 

Fig. 2  Red-on-blue ERG presentation in a control subject 
(a) and a PD subject (b). The amplitude of the a-wave was 
measured from the baseline to the negative trough, and the 
amplitude of the b-wave was measured from the trough of the 
a-wave to the following peak. The PhNR amplitude was meas-

ured from baseline to the minimum point in the trough. The 
implicit time was defined as the time from light onset to wave 
peak. In these examples, the negative wave 1 is the a-wave, the 
positive wave 2 is the b-wave and the negative wave 5 is the 
PhNR
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pressure, BCVA, disease duration and Hoehn and 
Yahr scale scores of the participants are summa-
rised in Table  1. There was no significant differ-
ence between groups for sex, age and IOP (p = 0.88, 
p = 0.99 and p = 0.17, respectively). The mean age 
was 61 ± 10.4 in the PD group and 60.9 ± 7 in the 
control group. BCVA was significantly decreased 
in the PD group (p = 0.002, Table  1). The disease 
duration of PD was 5.1 ± 3.6 years. Hoehn and Yahr 
scores were significantly higher and REM sleep 
behaviour frequency was significantly higher in the 
PD group compared to the control group (p < 0.001 
and p < 0.001, respectively, Table 1).

For flash photopic ERGs, the amplitudes of a-, 
b- and PhNR-waves were significantly reduced in 
the PD group compared to the control group, but the 
peak time were not significantly different between 
groups (Table 2). The median PhNR/b wave ratio was 
− 0.43 ± 0.13 in the PD group and − 0.39 ± 0.24 in the 
control group and there was no significant difference 
between the groups (p = 0.514). There was no signifi-
cant inverse correlation between the wave amplitudes 
(a, b and PhNR) and the PD duration. There was 
no significant correlation between Hoehn and Yahr 
scores and wave amplitudes (a, b and PhNR) in the 

ERG. BCVA was significantly correlated with Hoehn 
and Yahr scores in this study indicating worse visual 
acuity with more severe PD (p < 0.001, r = − 0.596). 
There was a significant correlation between BCVA 
and a-wave amplitude (p = 0.047, r = − 0.251). How-
ever, there was no significant correlation between 
BCVA and b and PhNR amplitude.

In OCT analysis, there were significant differ-
ences between the control and PD groups, which were 
greater thickness in the nasal 1–3 mm INL in PD, and 
lesser thickness in the temporal and inferior 1–3 mm 
OPL, and in temporal peripapillary RNFL in PD 
(p = 0.032, p = 0.002, p = 0.016 and p = 0.012, respec-
tively), but the remaining retinal layers and sectors 
were not significantly different (Supplementary file 1, 
p > 0.05). The correlations between ERG amplitudes 
and sectors of retinal layers in OCT were also ana-
lysed and statistically the significant results are sum-
marised in Table 3. The other layers and sectors were 
not significantly different (p<0.01) and are not shown 
in the table due to the large amount of the data. Cor-
relation plots of a-wave  and PhNR are presented in 
Fig. 3. 

ROC analysis was performed to evaluate the diag-
nostic value of PhNR amplitude in PD and the AUC 

Table 1  Demographic 
data and clinical findings of 
participants

PD—Parkinson’s disease, 
F—female, M—male, 
SD—standard deviation, 
IOP—intraocular pressure, 
BCVA—best corrected 
visual acuity, REM—rapid 
eye movement

Variables Control PD p

Gender (F/M) 18/14 18/13 0.88
Age (years, mean ± SD) 60.9 ± 7 61 ± 10.4 0.99
IOP (mmHg, mean ± SD) 14.6 ± 2.2 13.6 ± 3.3 0.17
BCVA logMAR ( median, min–max) 0 (0–0.2) 0.07 (0–0.5) 0.002
Parkinson’s Disease Duration (years, mean ± SD) – 5.1 ± 3.6 –
Hoehn and Yahr Scale (median, mix-max) 0 (0–0) 2 (1–3)  < 0.001
REM sleep behaviour disorder 0/31 13/32  < 0.001

Table 2  Amplitudes and implicit times of a, b, and PhNR waves in ERG

CG—control group, PD—Parkinson’s disease

Variables CG N = 31 PD N = 32 p

a wave amplitude (µV, median and 25–75%) − 32.4 (− 38.5/− 27.2) − 24.1 (− 30.3/− 20.0)  < 0.001
a wave implicit time (ms, Mean ± SD) 15.9 ± 1.3 16.1 ± 1.7 0.614
b wave amplitude (µV, median and 25–75%) 110.5 (91.0/147.4) 92.4 (75.5/114.6) 0.011
b wave implicit time (ms, Mean ± SD) 32.5 ± 1.4 32.1 ± 1.8 0.364
PhNR wave amplitude (µV, median and 25–75%) − 48.6 (− 62.6/− 39.7) − 40.2 (− 45.1/− 25.8) 0.001
PhNR wave implicit time (ms, median and 25–75%) 72.3 (70.5/73.1) 70.5 (68.0/73.1) 0.050
PhNR/b wave ratio (Mean ± SD) − 0.43 ± 0.13 − 0.39 ± 0.24 0.514
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value was 0.734 (95%CI: 0.608–0.837, p < 0.001) 
(Fig.  4). The AUC values for a- and b-wave ampli-
tudes were 0.773 (95%CI: 0.650–0.869, p < 0.001) 
and 0.685 (95%CI: 0.556–0.796, p = 0.006), respec-
tively. The sensitivity, specificity and cut-off values 
of ERG waves are summarised in Table 4. There was 
no significant difference in the pairwise comparison 
of ROC curves (PhNR—a wave p = 0.59; PhNR—b 
wave p = 0.51, a-b wave p = 0.06).

There was no statistical difference in ERG ampli-
tudes orimplicit times between PD patients with and 
without REM sleep behaviour disorder (p > 0.05).

Discussion

This study found significantly lower amplitudes of the 
PhNR, a- and b-waves in the red-on-blue ERG in PD 
patients compared to healthy controls. Pattern ERGs 

have been investigated in PD but PhNR in the ffERG 
has some advantages over the PERG in that it is less 
affected by refractive status and media opacities [27, 
28]. PD has been associated with reduced scotopic 
and photopic a- and b-wave amplitudes [29, 30]. In 
Parkinson’s disease, dopaminergic amacrine cells 
and their plexuses are depleted in the human retina, 
followed by global dysfunction of the dopaminergic 
system. Dopaminergic amacrine cells are regulators 
of horizontal cells and rod-cone coupling. They also 
modulate ganglion cells [5]. The a-wave originates 
mainly from cone photoreceptors and some bipolar 
cells. The b-wave is mainly caused by bipolar cells 
and their interaction with Müller cells. These cells 
have dopamine receptors and dopamine modulation 
[5, 31]. Therefore, reduced dopaminergic activity 
in PD may result in functional changes in the retina 
and optic nerve that can be detected by electrophysi-
ological testing [32, 33].α-Synuclein accumulation in 

Table 3  Significant correlations between ERG responses and 
sectors of retinal layers in OCT in all group

A—amplitude, IT—implicit time, c—central 1  mm, s—supe-
rior 1–3  mm, i—infeior 1–3  mm, n—nasal 1–3  mm, t—tem-
poral 1–3 mm in ETDRS grid. INL—inner nuclear layer, ONL 
—outer nuclear layer, OPL—outer plexiform layer, pRNFL 
—peripapillary retinal nerve fibre layer, RPE—retina pigment 
epitelium

Variables/test r P

a wave amplitude—i-INL − 0.258 0.041
a wave amplitude—t-OPL − 0.266 0.035
b wave amplitude—i-INL 0.305 0.015
b wave amplitude—ts-pRNFL − 0.252 0.046
b wave amplitude—t-pRNFL − 0.261 0.039
PhNR wave amplitude—n-IPL − 0.316 0.012

Fig. 3  Scatter plots showing the relationship between OCT thickness parameters and the amplitudes of a-waves and PhNRs

Fig. 4  ROC curve of a-, b- and PhNR-waves amplitude
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RGCs resembling Lewy bodies in the brain has been 
demonstrated in PD. RGC α-synuclein accumula-
tion has been suggested to be an in vivo indicator of 
the severity of brain pathology [6, 7]. We measured 
PhNR from baseline to trough; the  PhNR is  mainly 
derived from RGCs [27]. The decrease in PhNR 
amplitude in PD patients in our study may be attrib-
uted to the loss of RGC cells and function. However, 
a decrease in the a- and b-wave components will lead 
to some decrease in the PhNR. A recent study by 
Mello et al. comparing ffERG scans from PD patients 
with a control group found a decrease in the ampli-
tudes of the b-wave and the PhNR in PD patients, 
and the authors suggested that the PhNR might be a 
potential new biomarker [34]. However, our results 
did not confirm this. The fact that there was no signif-
icant difference in the PhNR/b-wave ratio in our study 
or in the study by Mello et  al.[34], which confirms 
that PD causes generalised retinal dysfunction.

BCVA was significantly reduced in the PD group 
compared to the control group. Previous studies have 
shown alterations in visual acuity, contrast sensitiv-
ity, colour discrimination, pupil reactivity, eye move-
ments, motion perception, visual field sensitivity and 
visual processing speed in PD [28, 35]. Visual dys-
function is attributed to alterations in both the retina 
and the brain [28]. Retinal electrophysiological stud-
ies have supported retinal dysfunction, which may 
explain the reduced visual function in PD. BCVA 
was significantly associated with Hoehn and Yahr 
scores in this study, suggesting that visual acuity is 
worse with more severe PD. We did not find a sig-
nificant correlation between BCVA and PhNR ampli-
tude, however, BCVA was negatively correlated with 
a-wave amplitude.

Previous OCT studies showed structural retinal 
changes mostly in inner retinal layers in PD, but vari-
able results were reported. Previous meta-analysis 
studies reported decreased GCL and IPL layer thick-
nesses is common, but conflicting results exist about 

other layers of macular RNFL, INL, OPL, ONL and 
peripapillary RNFL thicknesses [1, 36, 37]. In our 
study, we found thicker nasal INL, and thinner tem-
poral and inferior OPL in the macula, as in previous 
reports [38, 39], however, the GCL thickness was 
not significantly different between PD and control 
groups. This result might be explained by the patients 
in the PD group not having high severity scores 
(Hoehn and Yahr, range 1–3) and ganglion cell loss 
was not severe enough to cause thinner GCL or sub-
sequent IPL and RNFL. α-synuclein accumulation 
was also reported in the INL layer [40] and this may 
explain increased INL thickness. Temporal peripapil-
lary RNFL was significantly reduced in the PD group 
compared to the control group, which supports pre-
vious reports that showed temporal preferential loss 
patterns in PD patients [8]. Structural parameters 
with OCT and functional parameters with multifo-
cal ERG have been shown to have some correlation 
in PD [4]. In this study, significant correlations were 
found between a, b and PhNR amplitudes and sec-
tor OCT layer thickness.

Sleep disorders including REM sleep behav-
iour disorders are common in PD [19, 41]. Degen-
eration of the retinal melanopsin system including 
melanopsin-containing RGCs  (ipRGC) is blamed 
for sleep and circadian rhythm disorders in PD 
[19, 42]. Melanopsin is a vitamin A-derived pho-
topigment [43];  melanopsin-containing RGCs are 
intrinsically photosensitive retinal cells that have 
been shown to be decreased in PD [19]. A previous 
study that analysed immunotoxin-induced ablation 
of the ipRGCs in rhesus monkeys reported dimin-
ished PhNR amplitudes with red on blue flashes 
after toxin injection compared with contralateral 
control eyes [44]. Thus, we compared RGC func-
tion with ERG, particularly with PhNR, and retinal 
layer thicknesses between PD patients with or with-
out REM sleep behaviour disorders and there was 
no significant difference between the two patient 

Table 4  ROC analysis 
results of ERG waves 
amplitudes

Variables Cut off Sensitivity Specificity Area under curve Confidence 
interval 
(95%)

p

a wave amplitude − 30.8 0.843 0.645 0.773 0.650–0.869  < 0.001
b wave amplitude 127.8 0.906 0.451 0.685 0.556–0.796 0.006
PhNR amplitude − 47.7 0.875 0.580 0.734 0.608–0.837  < 0.001
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groups. These results suggest that ipRGCs may not 
make a significant contribution to the PhNR. In the 
ROC analysis, the AUC value of PhNR was 0.761 
and a-wave was 0.773 (Fig.  4). AUC values below 
0.5 means poor diagnostic capacity for discriminat-
ing subjects with or without disease [45]. A value 
between 0.7—0.8 is considered acceptable, which 
means PhNR and a-wave are acceptable tools for 
discriminating study subjects with PD disease or 
without [45].

This study had several limitations. First, the PD 
group consisted of patients with Hoehn and Yahr 
scores below 3 and there were no patients with 
severe disease. Second, all the patients were under 
anti-PD medications, which have been  shown to 
affect ERGs. Since PD medications upregulate 
dopaminergic activity, it may have a positive effect 
on ERG amplitudes [12, 46–48]. Nevertheless, our 
results suggest that patients with PD have general-
ised retinal dysfunction. Third, other visual func-
tions including colour vision and contrast sensitiv-
ity were not evaluated in the study population. The 
subjective nature of the assessment of REM sleep 
is a further limitation of this study. The study did 
not have pupil light reflex data to confirm ipRGC 
involvement.

In conclusion, the present study provides evidence 
of reduced a-wave, b-wave and PhNR amplitudes in 
PD patients. The researchers also performed ROC 
analysis and found that the a-wave amplitude and 
PhNR amplitude had acceptable discriminatory abil-
ity in distinguishing PD patients from healthy sub-
jects. These findings suggest that the whole ERG 
response, not just the PhNR, is attenuated in peo-
ple with PD, suggesting a possible involvement of 
the visual system in the disease. Further research is 
needed to better understand the underlying mecha-
nisms and clinical implications of these observations.
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