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PURPOSE. The effect of noncoding variants is often unknown in the absence of functional
assays. Here, we characterized an ABCA4 intron 7 variant, c.859-25A>G, identified in
Palestinian probands with Stargardt disease (STGD) or cone-rod dystrophy (CRD). We
investigated the effect of this variant on the ABCA4 mRNA and retinal phenotype, and
its prevalence in Palestine.

METHODS. The ABCA4 gene was sequenced completely or partially in 1998 cases with
STGD or CRD. The effect of c.859-25A>G on splicing was investigated in silico using
SpliceAI and in vitro using splice assays. Homozygosity mapping was performed for 16
affected individuals homozygous for c.859-25A>G. The clinical phenotype was assessed
using functional and structural analyses including visual acuity, full-field electroretinog-
raphy, and multimodal imaging.

RESULTS. The smMIPs-based ABCA4 sequencing revealed c.859-25A>G in 10 Palestinian
probands from Hebron and Jerusalem. SpliceAI predicted a significant effect of this puta-
tive branchpoint-inactivating variant on the nearby intron 7 splice acceptor site. Splice
assays revealed exon 8 skipping and two partial inclusions of intron 7, each having
a deleterious effect. Additional genotyping revealed another 46 affected homozygous or
compound heterozygous individuals carrying variant c.859-25A>G. Homozygotes shared
a genomic segment of 59.6 to 87.9 kb and showed severe retinal defects on ophthalmo-
scopic evaluation.

CONCLUSIONS. The ABCA4 variant c.859-25A>G disrupts a predicted branchpoint, resulting
in protein truncation because of different splice defects, and is associated with early-onset
STGD1 when present in homozygosity. This variant was found in 25/525 Palestinian
inherited retinal dystrophy probands, representing one of the most frequent inherited
retinal disease-causing variants in West-Bank Palestine.
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S targardt disease (STGD1) is the most frequent inherited
maculopathy with an estimated prevalence of one in

10000.1 It is caused by biallelic variants in the gene encoding
the transmembrane ATP-binding cassette transporter type
A4 (ABCA4).2 More than 2200 unique variants have been
reported for ABCA4 (http://www.lovd.nl/ABCA4),3,4 which

have been linked to a spectrum of autosomal recessive macu-
lopathies, such as classical STGD1, fundus flavimaculatus,
cone-rod dystrophy (CRD), and atypical retinitis pigmentosa
(RP).2,5–8

The observed clinical heterogeneity has led to a
genotype-phenotype correlation model in which the
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severity of retinal dystrophy correlates with the residual
activity of the ABCA4 protein because of the effect of the
two causal alleles.9 In this model, variants can be categorized
as deleterious (or severe), moderately severe, mild or hypo-
morphic.8,10,11 The identification of two pathogenic alleles is
important to provide an accurate clinical prognosis and for
the application of possible future gene- or variant-specific
therapies.8,12

A conspicuously high proportion of reported ABCA4
variants (∼25%) affect RNA splicing,13 either result-
ing in exon skipping or intron inclusion when they
are located at exon-intron junctions,11,14 or resulting in
pseudo-exon inclusion in the case of deep-intronic vari-
ants.12,13,15–18 Notably, previous studies using whole ABCA4
gene (consisting of 50 exons spanning 128 kb) sequenc-
ing has uncovered pathogenic non-coding variants in
∼21% of STGD1 probands and in vitro splice assays
have allowed a detailed characterization of putative splice
variants.12,17,19,20

The prediction of the presence of pseudo-exons in
ABCA4 was first shown by Braun et al.,21 who performed
deep mRNA sequencing. In this way, low-abundant tran-
scripts that contained putative pseudo-exons were revealed.
Sequence analysis of these pseudo-exons in genetically
unexplained STGD1 cases revealed the first causal deep-
intronic variants in ABCA4. These low-abundant transcripts,
in the absence of splice-site strengthening or creating vari-
ants in normal individuals, are often not present. In those
cases, the discovery and selection of putative splice vari-
ants relies on the use of in silico prediction tools. Splicing
defects occur when a variant alters one of the key splic-
ing signals. These include the consensus sequences at the
splice acceptor site (SAS) or splice donor site (SDS), the
branchpoint site, as well as exonic or intronic cis regu-
lators that act as enhancers or silencers.22,23 Several in
silico tools are available to predict canonical and cryptic
splice sites based on these key elements. The approaches
utilized by these tools vary from position weight matrix,
Markov model, and maximum entropy principle24–29 to more
complex methods based on artificial neural networks and
machine learning.30,31 Nevertheless, the majority of predic-
tion tools are lacking accuracy in predicting the effect of
novel deep-intronic variants outside of the known consti-
tutive splice sites. There are several aspects of splicing
not considered by prediction tools, such as the concerted
role of different splicing signals and splice-site interde-
pendency,32 chromatin organization33 and tissue-specific
splicing events.16,34,35 Some of these shortcomings can be
addressed by using recently developed tools based on deep
residual neural networks such as SpliceAI,36 which is self-
trained on pre-mRNA sequences to predict the likelihood
that a certain position will be used as a splice site, and
does not rely on a priori knowledge, allowing the incor-
poration of splicing determinants that are still not well
understood.

In the context of a large-scale single molecule molec-
ular inversion probes (smMIPs)-based ABCA4 sequencing
study of STGD and STGD-like probands, we found, through
the deep learning prediction tool SpliceAI,36 a putative
pathogenic variant just upstream of exon 8, which poten-
tially could result in a splice defect. Its frequent presence
in other Palestinian STGD1 cases prompted us to investigate
its effect on ABCA4 splicing, its associated ophthalmological
characteristics, its founder characteristics, and its prevalence
in the Palestinian population.

MATERIALS AND METHODS

Patients and Genotyping Methods

The “discovery” cohort (cohort 1) consisted of 876 probands
with a diagnosis of STGD, CRD, or macular dystrophy (MD)
based on the clinical phenotype. They were ascertained
in 21 centers from all over the world, and include 175
cases that originate from Palestine. For these probands, the
entire 128-kb ABCA4 gene was sequenced using smMIPs,
as previously described.18 In brief, series of ∼210 probands
were sequenced using the Illumina NextSeq 500 platform,
followed by variant calling and annotation through an in-
house bioinformatics pipeline. The second cohort in this
study (cohort 2) was described previously17 and origi-
nally consisted of 1,054 probands with genetically unsolved
STGD, CRD and MD cases. The smMIPs-based ABCA4
sequencing genetically explained 448 probands,17 whereas
606 probands remained genetically unsolved, of which 38
probands were submitted by the St. John of Jerusalem Eye
Hospital Group and Hadassah Medical Center, Jerusalem,
Palestine.Whole exome sequencing (WES) data (M. Salameh,
A. AlTalbishi, D. Sharon, unpublished data) and MIPs-based
sequencing data (M. Salameh, A. AlTalbishi, D. Sharon, F.P.M.
Cremers, unpublished data) from another 312 Palestinian
inherited retinal dystrophy (IRD) probands (cohort 3) were
re-analyzed for the presence of the c.859-25A>G variant.
Similarly, 201 Palestinian IRD probands and affected siblings
were analyzed through Sanger sequencing of ABCA4 exon 8
and flanking sequences (cohort 4). Three additional indi-
viduals from the National Eye Institute, National Insti-
tutes of Health in the United States, were identified to
carry the variant by assessment of custom capture next-
generation sequencing data from commercial clinical genetic
testing panels for STGD, MD or retinal dystrophy. For allele
frequency (AF) calculations, an overall cohort of 525 Pales-
tinian probands was considered. This final cohort includes
the Palestinian probands present in cohorts 1 and 2 (175 and
38, respectively) and all 312 probands in cohort 3. Because
cohort 4 is largely composed of affected siblings and rela-
tives, it was not included in the calculation of the AF. A group
of 1400 non-IRD Palestinian probands, for which WES data
was available, were used as controls. Statistical analysis of
the results was performed using a one-tailed Fisher’s exact
test.

Variant Selection by in Silico Analysis

Variant selection from smMIPs sequencing data started with
quality filtering on the overall coverage of the variants
(>20 reads, given an average of 340 reads per nucleotide)
and the percentage of variation at the position (variant
present in ≥25% of all reads). Further variant prioriti-
zation was performed considering the AF, being <0.005
in the dbSNP database and <0.01 in general popula-
tion databases, such as the Genome Aggregation Database
(gnomAD; http://gnomad.broadinstitute.org/). In silico anal-
ysis was performed using the deep-learning tool SpliceAI to
identify putative variants causing splice defects.36 SpliceAI
predictions were considered for each nucleotide position
in ABCA4, and the script was set to return the five high-
est delta scores for acceptor gain, acceptor loss, donor gain,
and donor loss, in a window of 5000 nucleotides (nt) up- and
downstream from the selected position. Likely pathogenic
deep-intronic or noncanonical splice site (NCSS) variants
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were selected if the delta score was >0.1 (range 0–1).
Variants were considered to be part of the NCSS when
located between −14 to −3 upstream of an exon and +3
to +6 downstream of an exon, or positioned within the first
and last two nucleotides of an exon. Alamut Visual 2.13 soft-
ware and its splice defect prediction tools (SpliceSiteFinder-
like,37 MaxEntScan,26 NNSPLICE30 and GeneSplicer27) were
used as a visual aid to identify the position in which SpliceAI
delta scores were predicted and to characterize the genomic
context around the variant.

Midigene-Based Splice Assay

The splicing effect of c.859-25A>G was assessed using in
vitro splice assays, based on a previously established wild-
type midigene (BA7) containing ABCA4 exons 7 to 11.14

A mutant construct was generated for the variant through
site-directed mutagenesis followed by Gateway Cloning.
Subsequently, wild-type and mutant constructs were trans-
fected separately in Human Embryonic Kidney (HEK293T,
ATCC# CRL-3216) cells. HEK293T cells were cultured in
Dulbecco’s Modified Eagle Medium (DMEM) supplemented
with 10% fetal bovine serum, 1% penicillin-streptomycin,
and 1% sodium pyruvate at 37°C and 5% CO2. For trans-
fection, cells were seeded in a six-well plate and trans-
fected at 70% confluency with 600 nanograms (ng) of plas-
mid using FuGENE HD reagent (Promega, Madison, WI,
USA), as specified in the manufacturers protocol. Transfec-
tion of the mutant construct was performed in duplicate.
After 48 hours, RNA was obtained from the cells using the
Nucleospin RNA kit (Machery-Nagel, Düren, Germany), and
cDNA was synthesized from 1000 ng of RNA through the
iScript cDNA Synthesis kit (Bio-Rad, Hercules, CA, USA).
Reverse-transcription–polymerase chain reaction (RT-PCR),
agarose gel analysis and Sanger sequencing were performed
to assess the nature of splicing defects. RT-PCR conditions
were as follows: 94°C for two minutes, followed by 35
cycles of 30 seconds at 94°C, 30 seconds at 58°C, and five
minutes at 72°C, with a final extension step of two minutes at
72°C. Details on the primers used for mutagenesis, PCR, and
Sanger sequencing can be found in Supplementary Table
S1. Ratios between different RNA products were assessed
by semi-quantification using Fiji software38 after agarose gel
electrophoresis.

WES and Targeted Sanger Sequencing

WES was performed using 3billion Inc. (Seoul, South Korea)
and Variantyx Inc. (Framingham, MA, USA) sequencing
services for 250 and 63 additional samples, respectively.
Sanger sequencing (Macrogen Europe B.V., Amsterdam,
the Netherlands; analysis using Chromas software) was
performed to confirm the presence of the c.859-25A>G vari-
ant in this cohort and for 200 additional Palestinian IRD
probands. PCR was performed using the following condi-
tions: 95°C for two minutes; 40 cycles of 15 seconds at 95°C,
15 seconds at 60°C, and 45 seconds at 72°C; final extension
at 72°C for five minutes. Details on the primers used for
PCR and Sanger sequencing can be found in Supplementary
Table S1.

Haplotype Analysis for the ABCA4 Locus

Haplotype analysis was performed on WES data for 16
probands using Automap tool (https://automap.iob.ch/) to

show homozygous regions in chromosome 1. For haplo-
type identification within these regions, BAM files (gener-
ated using https://usegalaxy.org/) were uploaded into Inte-
grative Genomics Viewer software (IGV v.2.9.4)39,40 and
were manually screened for each genomic location within
the homozygous regions defined by Automap. The ABCA4
locus was screened manually. Variant calling format files
(vcf) provided by 3billion were used to generate annotated
genetic variants spreadsheets using ANNOVAR online tool
(https://wannovar.wglab.org/). Within the ABCA4 region,
haplotype information for 23 single nucleotide polymor-
phisms spanning over 125 kb was obtained.

Clinical Phenotyping

All individuals were examined by an experienced ophthal-
mologist for clinical analysis. The phenotype data collected
included the following: anamnestic information on disease
onset, symptoms and progression, age at last examina-
tion, best-corrected Early Treatment of Diabetic Retinopa-
thy Study (ETDRS) chart visual acuity converted to logMAR
(31/33 probands), clinical ocular exam by slit lamp biomi-
croscopy, kinetic and/or static perimetry, fundus photos,
fundus autofluorescence (FAF) and optical coherence
tomography (OCT). When available, age at electroretinogra-
phy (ERG) and ERG respecting International Society for Clin-
ical Electrophysiology of Vision standards were collected
for both probands and affected relatives (20/56).41 For most
patients, information on a specific age of onset was not avail-
able; thus age at last examination was reported instead. In
most cases first examination took place in early childhood
when the first symptoms appeared.

ERG for patients from the St John of Jerusalem Eye Hospi-
tal Group was performed using the Metrovision machine.
The Topcon Triton 3D was used for OCT, fundus photos
and FAF. The recently recruited patients had FAF and
fundus photos taken using the Zeiss Clarus camera (Zeiss,
Germany). In the National Eye Institute, ERG was performed
using an LKC console and Burian-Allen contact lens elec-
trodes. In addition, Cirrus-HD-OCT scans were performed
as well as color fundus photography and fundus autofluo-
rescence imaging. Full-field ERG (ffERG) information from
Hadassah Medical Center was obtained using corneal elec-
trodes and a computerized system (UTAS 3,000, LKC, MD).
Briefly, in the dark-adapted state, a rod response to a dim
blue flash and a mixed cone-rod response to a white flash
were acquired. Cone responses to 30-Hz flashes of white
light were acquired under a background light of 21 cd/m2.
All responses were filtered at 0.3–500 Hz and signal aver-
aging was used. OCT was performed using the Heidelberg
Spectralis system, while color, infrared and FAF imaging
were assessed using a Zeiss and/or Optos fundus camera
and the Heidelberg Spectralis system. At Sickkids in Toronto
phenotyping included ERG testing using the Diagnosys
system whereas OCT imaging used the Heidelberg Spectralis
system.

RESULTS

Identification of ABCA4 Intron 7 Variant
c.859-25A>G and In Silico Splice Defect
Predictions

Incorporation of SpliceAI predictions in the annotation of
smMIPs sequencing data led to the identification of the
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c.859-25A>G (chr1(GRCh37):g.94,546,299T>C) variant in
10 patients of Palestinian descent in the 876 STGD and
STGD-like probands of cohort 1 (Table 1). This novel
variant is absent in control populations in gnomAD. The
position of the variant outside the SAS consensus sequence,
but still close to the intron-exon junction, suggested a puta-
tive effect on other splicing elements, such as the branch-
point sequence (BPS). Therefore, an in-depth in silico anal-
ysis of the variant was performed using modified settings for
the deep learning tool SpliceAI. Using a “scanning” window
of 5000 nt upstream and 5000 nt downstream of c.859-
25A>G, the strongest prediction entailed the skipping of
exon 8 (SAS loss with a delta score of 0.39), together with a
new SAS gain 138 nt upstream of exon 8 (delta score 0.31)
(Supplementary Table S2). Interestingly, a donor loss with
a delta score of 0.09 was predicted at the SDS of intron
7. Although this delta score did not reach the threshold of
significance, it might be a contributing factor to exon 8 skip-
ping (Supplementary Fig. S1A).

Considering that previous smMIPs sequencing datasets
were not analyzed with the aid of SpliceAI, we re-examined
the sequencing results of 606 genetically unsolved STGD
or STGD-like probands (cohort 2)17 and identified c.859-
25A>G in nine additional cases (Table 1). Similarly, anal-
ysis of cohorts 3 and 4 lead to the identification of seven
and five additional probands carrying this variant, respec-
tively. Additionally, 22 affected relatives were found to carry
this variant (Supplementary Table S3). Finally, two addi-
tional probands and one affected relative carrying the variant
were independently identified in the National Eye Institute
in the United States (Cohort 5). In total, we found 56 cases
carrying c.859-25G>A, comprising 41 homozygotes and 15
compound heterozygotes, belonging to 33 families. Most of
the cases carrying c.859-25A>G reside in or in the vicinity
of Hebron with the following distribution: Hebron Gover-
norate (n = 39 cases), Bethlehem (n = 7), Jerusalem (n = 6)
(Supplementary Fig. S2). The four cases who carry this vari-
ant and reside in the US or Canada originated from Jerusalem
and Bethlehem (Table 1 and Supplementary Figs. S3 and S4).

Allele Frequency Comparison Between Patient
and Control Cohort

An overall cohort of 525 Palestinian probands was consid-
ered to calculate the AF of c.859-25A>G in the patient popu-
lation. As 20 homozygous and 5 compound heterozygous
cases were identified, we calculated an AF of 0.04. Screen-
ing of the WES control cohort (1400 non-IRD probands)
returned an AF of 0.003, since the variant was identified
in only 9 alleles. The difference between the two AF was
assessed for statistical significance with a one-sided Fisher’s
exact test, that returned a p-value of 0.0001. Additionally,
an odds ratio (OR) of 13.89 (confidence interval: 6.76–
28.51) was obtained, which is in line with the OR>5 value
ACMG guidelines report as a strong indicator of pathogenic-
ity.42 These results show that c.859-25A>G is significantly
enriched in the patient population.

In Vitro Splicing Assay

The effect of c.859-25A>G was assessed using in vitro splice
assays in HEK293T cells (Fig. 1). The cells were trans-
fected either with a wild-type midigene construct (span-
ning ABCA4 exon 7 to exon 11) or a mutant construct

carrying c.859-25A>G. Sanger sequencing analysis of RT-
PCR products revealed three splicing defects and no remain-
ing wild-type product in HEK293T cells. Skipping of exon
8 was observed, which resulted in a shift of the read-
ing frame and the introduction of a premature stop codon
(p.Phe287Hisfs*7). In addition, two distinct partial intron
inclusions were observed among the RT-PCR products
obtained fromHEK293T cells transfected with the previously
described midigene construct. These are likely due to the
abolition of the BPS and lead to the activation of two cryp-
tic SASs in intron 7. A partial intron inclusion of 138 nt at the
5ʹ end of exon 8 corresponds with the activation of a cryptic
SAS at position c.859-138, as predicted by SpliceAI (Supple-
mentary Table S2 and Fig. S1A), and results in a frameshift
leading to the introduction of a premature stop codon
(p.Phe287Leufs*3). A second partial intron inclusion of 685
nt is the result of the use of a second cryptic SAS at position
c.859-685, also leading to a frameshift and a premature stop
codon (p.Phe287Tyrfs*33). Interestingly, this partial inclu-
sion was predicted by the second strongest delta score,
which yielded a SAS gain with a delta score of 0.06 at posi-
tion c.859-685 (Supplementary Table S2 and Supplementary
Fig. S1B). Considering that all three mutated products lead to
a nonfunctional ABCA4 protein, c.858-25A>G can be consid-
ered to be deleterious and will act as a severe allele. The
protein notation of this defect, based on semi-quantification
of the cDNA products (Supplementary Table S4), is expected
to be p.[Phe287Hisfs*7,Phe287Tyrfs*33,Phe287Leufs*3].

c.859-25A>G Resides on a Founder Haplotype

Homozygosity mapping was performed using WES data
from 16 c.859-25G>A homozygous probands. Homozygous
regions in probands carrying c.859-25G>A varied in size
from 85 kb to 108 Mb. The identity-by-descent (IBD) region
starts at g.94,546,299 (c.859-25G>A) and ends at posi-
tion g.94,486,667 (rs933073), resulting in a shared homozy-
gous region of 59.6 kb (Fig. 2 and Supplementary Table
S5). Because WES data does not cover the ABCA4 locus
completely, the exact boundaries of the IBD region cannot
be determined. Intervals of 18.2 kb and 10.1 kb lacking
SNP data to assess the haplotype are present at the 5ʹ
(telomeric) and 3ʹ (centromeric) side, respectively. Thus the
IBD region spans between 59.6 and 87.9 kb. In the 5ʹ
region of the ABCA4 gene, four haplotypes can be distin-
guished (Supplementary Table S5), suggesting that at least
four different recombination events occurred in the ances-
tors of the STGD1 cases between variant c.859-25G>A
at position g.94,546,299 and the most 5’ (centromeric)
ABCA4 SNP analyzed (rs3789451; g.94,586,328). Of these,
haplotype 1 was the most prevalent in the analyzed cases
(8/16), and proband 1 carrying this haplotype was thus
considered as a reference to determine shared homozygos-
ity regions between probands (Fig. 2 and Supplementary
Table S5). At the 3ʹ end of the ABCA4 gene, all probands
except proband 3 are homozygous and carry the same
haplotype.

Ophthalmic Characteristics of Biallelic
c.859-25G>A Cases

Phenotypic details for a representative selection of homozy-
gous and compound heterozygous patients harboring c.859-
25A>G are provided in Table 2 and Figures 3 and 4. The
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FIGURE 1. Overview of splice defects caused by variant c.859-25A>G in HEK293T cells. (A) Wild-type and mutant midigenes assay results.
Rhodopsin exon 5 (RHO ex5) RT-PCR was used as a control for transfection efficiency. The housekeeping gene Beta-Actin (ACTB) was
selected as a control for transcription. To the right, schematic representation of WT midigene (BA7_WT), in which the position of the variant
is indicated with an arrow. Beneath, schematic representation of the four RT-PCR products identified in panel (A). c.859-25A>G leads to
exon 8 skipping (Fragment 4), a partial intron 7 inclusion of 138-nt 5ʹ (Fragment 2) and a partial intron 7 inclusion of 685-nt 5ʹ elongation
of exon 8 (Fragment 1). WT product (Fragment 3) was not detected in the mutant construct. (B) The chromatograms show the exact exonic
and intronic breakpoints in the four fragments as confirmed by Sanger sequencing.

mean visual acuity of homozygous c.859-25G>A patients
was 1.1 logMAR, indicating legal blindness (at mean age of
12 years). Examples of FAF, OCT, and fundus images are
depicted for cases aged 10 years, 14 years and 42 years
(Figs. 3A–C), which show different stages of STGD1. All
cases showed foveal photoreceptor atrophy. None exhibit
the yellow flecks that are typically seen in intermediate

STGD1 cases. The 10-year-old presents with bull’s eye macu-
lopathy and the 14-year-old shows severe macular retinal
pigment epithelium (RPE) and photoreceptor (PR) atrophy
with localized hyperpigmentation deposits. The 42-year-old
displays diffuse retinal atrophy and hypo-autofluorescence
involving the whole retinal posterior pole and mid periph-
ery, as observed in fundus images and FAF. OCT shows
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FIGURE 2. Founder haplotype analysis for c.859-25A>G in 16 homozygous probands. On the left, the genomic positions on chromosome
1 and at the top patient ID numbers are reported. The haplotype of patient 1 was taken as a reference for comparison. Black boxes
represent identical homozygous segments between individuals, while grey boxes represent regions of homozygosity in single individuals.
IBD: identity-by-descent, encompassing between 59.6 kb and 87.9 kb. The homozygous region in 37 ends at 12.8 Mb.

TABLE 2. Clinical Characteristics of Selected ABCA4-Retinopathy Patients With c.859-25A>G

BCVAID
(no.) Second ABCA4 Allele Sex

Age at Last
Examination

(yrs) OD OS
Fishman

Classification*

Foveal
Photo-

Receptors

FAF
Abnormal-

ities

Initial
Clinical

Diagnosis

18 p.[Phe287Hisfs*7,Phe287Tyrfs*33,Phe287Leufs*3] F 10 0.9 0.8 3 Atrophy Beyond CRD/STGD
27 p.[Phe287Hisfs*7,Phe287Tyrfs*33,Phe287Leufs*3] F 14 1.1 1.1 4 Atrophy Beyond CRD
24 p.[Phe287Hisfs*7,Phe287Tyrfs*33,Phe287Leufs*3] M 42 1.0 1.3 4 Atrophy Beyond CRD
6 c.6816+2T>A F 12 0.8 0.7 3 Atrophy Normal STGD
20 p.(Gly1961Ala) M 8 0.8 0.7 2 Atrophy Minimal CD
32 p.(Gly1961Glu) F 18 / / 2 Atrophy Beyond STGD
25 p.(Pro1660Leu) F 51 1.5 1.7 4 Atrophy Beyond Adv. CRD
55 p.(Pro1660Leu) M 39 NLP 1.3 4 Atrophy Beyond CRD
56 p.(Pro1088Ser) M 18 1.1 1.0 3 Atrophy Beyond CRD

Adv. CRD, Advanced cone-rod dystrophy; BCVA, best corrected visual acuity; CD, cone dystrophy; F, female; M, male; NLP, no light
perception; OD, right eye; OS, left eye; STGD, stargardt disease.

In all cases reported in the table, the first allele is c.859-25A>G. For sample 6 the cDNA notation is reported for the second allele since
no assay was performed to determine the protein effect of the variant affecting the canonical splice site sequence. Best corrected visual
acuity is reported in logMAR. Fundus autofluorescence reports the extent of abnormalities with regards to the vascular arcades.

*Fishman classification: 1 – flecks limited to within the vascular arcades, 2 – fleck-like lesions anterior to the vascular arcades and/or
nasal to the optic disc, 3 – most diffuse flecks resorbed leaving diffuse RPE atrophy, and 4 – not only diffusely resorbed fundus flecks and
atrophy of the retinal pigment epithelium but also diffuse choriocapillaris atrophy (Rotenstreich et al. Ophthalmology. 2003;100:1151–1158).

advanced atrophy of RPE and outer retinal layers of the
macula. ERG information was available for 15 homozygous
individuals. All of these showed abnormal cone responses
and 13/15 showed abnormal rod responses suggesting a
diagnosis of CRD (Supplementary Table S6).

The compound heterozygous case carrying c.859-25A>G
and the splice site variant c.6816+2T>A (no. 6; Fig. 4A)
shows increased foveal hypo-autofluorescence in FAF
images. Additionally, OCT shows central macular atrophy
of RPE, photoreceptors and the outer retinal layers with
preserved parafoveal retina. Fundus images show a beaten-
bronze foveal atrophy pattern with no flecks. The variant
c.6816+2T>A disrupts the exon 49 SDS and, in the absence
of the activation of a novel or wild-type cryptic SDS in exon
49 or intron 49, is predicted to result in exon 49 skipping.
The predicted mutant protein (p.(Val2244_Gln2272del))
would lack the C-terminus of the protein.

Compound heterozygous cases carrying c.5882G>C;
p.(Gly1961Ala) as a second allele have a mean visual acuity
of 0.9 logMAR. Fundus photos and FAF in most cases
show diffuse patchy retinal atrophy of the posterior pole
with pigmentary changes and diffuse macular atrophy and
retinal thinning in OCT (no. 20; Fig. 4B). Based on our
data, we classified variant c.5882G>C as moderately severe.
Patient 32 (Fig. 4C) carries c.5882G>A;p.(Gly1961Glu) as
a second variant. Fundus and FAF images show an abnor-
mal foveal hypo-autofluorescence signal with some hypo-
autofluorescent and hyper-autofluorescent flecks in the
posterior pole of the retina and blunt foveal reflex with
posterior pole yellowish flecks. OCT images show a narrow
area of foveal RPE and photoreceptor atrophy. The retinal
images show defects that are confined to the vascular arcade,
which is typical for STGD1 cases carrying p.(Gly1961Glu) in
trans with any deleterious allele.43
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FIGURE 3. Ophthalmic features of homozygous retinopathy cases carrying c.859-25A>G. Fundus autofluorescence (upper panels), optical
coherence tomography (OCT) (middle panels) and color fundus (lower panels) for left (OS) and right (OD) eyes of three homozygous cases.
The pictures are ordered by age to show different stages of STGD1 phenotypic characteristics. (A) Proband 18, 10 years of age. FAF images
show enlarged foveal hypo-autofluorescence with hypo-autofluorescent spots in the posterior pole and mid periphery. OCT images show
central macular atrophy of the RPE, photoreceptors and the outer retinal layers with preserved parafoveal retina, fundus images show bull’s
eye maculopathy (beaten-bronze pattern) with no clear flecks and few pigmentary clumps in the temporal retina. (B) Proband 27, 14 years
of age. FAF images show patchy and pinpoint hypo-autofluorescence in the posterior pole and mid periphery, OCT images show diffused
RPE and photoreceptor atrophy with outer retinal layers disruption. Fundus images show beaten-bronze foveal appearance with orange hue
and pigment clumps. (C) Proband 24, 42 years of age. FAF images show a geographic pattern of diffuse hypo-autofluorescence involving
the whole retinal posterior pole and mid-periphery. OCT show advanced atrophy of the RPE and outer retinal layers of the whole macula.
Fundus images show diffuse retinal atrophy in the posterior pole with pigment clumps and orange macular hue.

Six patients from three separate families (Table 1 and
Supplementary Fig. S4) carry c.4979C>T, p.(Pro1660Leu) as
the second allele. This is a frequent pathogenic ABCA4 vari-
ant in the Israeli population.44 The two unrelated probands
carrying p.(Pro1660Leu) in Figure 4D and 4E show a
severe CRD phenotype with visual acuities ranging from
1.3 logMAR to no light perception, with an average of 1.5
logMAR. In patient 55 (Fig. 4D), living in the United States,
color fundus pictures at 31 years have a beaten-bronze macu-
lar atrophic appearance with a few flecks extending beyond
the nasal aspect of the optic nerve head. FAF imaging shows
a combination of macular hyper-autofluorescence (corre-
sponding to flecks) and some hypo-autofluorescent lesions
(RPE atrophy), extending beyond the nasal edge of the
optic nerve head. OCT confirms the macular atrophy with
the affected area showing loss of ellipsoid zone and reti-
nal pigment epithelium. ERG for the patient showed ampli-
tude reductions in both scotopic and photopic responses,
measuring at around 50% of the lower range amplitude value
compared to normal, with asymmetric responses (worse
in the right eye) and notable delay in photopic response
implicit times. The abnormal cone and rod responses are
suggestive of a CRD diagnosis. In patient 25 (Fig. 4E)
FAF and OCT at 51 years show large islands of complete
hypo-autofluorescence with remaining small island of hyper-
autofluorescence, an diffuse atrophy of the outer retina, RPE
and choroid with posterior staphyloma appearance. Fundus
images show diffuse posterior pole chorioretinal atrophy
with pigment clumps, however no ERG data was available
for this patient. The suggested diagnosis for the patient is
CRD. In the third family carrying c.4979C>T as second allele,

ERG results were available for patient 14 who had a clinical
diagnosis of STGD and presented with normal ERG values
for both cones and rods.

DISCUSSION

In this study, we identified a novel Palestinian founder
mutation, c.859-25A>G, in ABCA4. The variant affects the
putative branchpoint of intron 7, leading to a complex in
vitro splice defect in which exon 8 is skipped and two
partial inclusions of intron 7 occur. All splice defects are
likely to induce nonsense-mediated RNA decay and result
in the absence of ABCA4 activity. Additionally, no other
pathogenic variants were identified in the probands in
the shared homozygous region, offering c.859-25A>G as
a compelling pathogenic variant. Patients homozygous for
the variant show early-onset STGD1 and a phenotype that
strongly points to a deleterious effect of the variant. This
is further supported by the genotype-phenotype correla-
tion observed in compound heterozygous probands carry-
ing p.(Gly1961Glu) as second allele, which is in line with
previously reported cases of p.(Gly1961Glu) being present
in trans with a deleterious allele.43

Genotype-phenotype correlations in our study cohort
also suggests the classification of variant c.5882G>C;
p.(Gly1961Ala) as moderately severe. Regarding c.4979C>T,
different phenotypes were observed in the three fami-
lies carrying the variant in trans with c.859-25A>G. In
particular, two families showed a more severe phenotype
with a proposed diagnosis of CRD, suggesting a classi-
fication severe, whereas in the third family, all affected
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FIGURE 4. Ophthalmic features of compound heterozygous retinopathy cases carrying c.859-25A>G. Fundus autofluorescence (upper
panels), OCT (middle panels), and color fundus (lower panels) for left (OS) and right (OD) eyes of five compound heterozygous cases.
(A) Proband 6, carrying c.6816+2T>A p.(?) as the second allele. FAF images show enlarged foveal hypo-autofluorescence, OCTs show
central macular atrophy of RPE, photoreceptors and the outer retinal layers with preserved parafoveal retina. Fundus images show beaten-
bronze foveal atrophy pattern with no flecks. (B) Proband 20, carrying c.5882G>C p.(Gly1961Ala) as the second allele. FAF images show
enlarged foveal hypo-autofluorescence, OCTs show central macular atrophy of RPE and photoreceptors with preserved parafoveal retina.
Fundus images show beaten-bronze foveal atrophy pattern with no flecks. (C) Proband 32, carrying c.5882G>A p.(Gly1961Glu) as the
second allele. FAF images abnormal foveal hypo-autofluorescence signal with hypo-hyper autofluorescence flecks in the posterior pole of
the retina, OCTs show images with a narrow area of foveal RPE and photoreceptor atrophy. Fundus images show blunt foveal reflex with
posterior pole yellowish flecks. (D–E) Probands 55 and 25, both carrying c.4979C>T p.(Pro1660Leu) as the second allele. (D) FAF images
show patchy hypo-autofluorescence islands in the posterior pole with diffused pinpoint hypo-autofluorescence involving the posterior pole
and mid-periphery, OCT images show diffused RPE and outer retinal layers atrophy involving the whole macula and fundus images show
diffused atrophy of the posterior pole with pigment clumps and yellow hue of the macula. (E) FAF images show large islands of complete
hypo-autofluorescence with remaining small island of hyper-autofluorescence, OCT images show diffused atrophy of the outer retina, RPE
and choroid with posterior staphyloma appearance. Fundus images show diffused posterior pole chorioretinal atrophy with pigment clumps.

individuals presented with a milder phenotype associated
to classical STGD, pointing to a moderately severe effect.
No other pathogenic variants in ABCA4 that would explain
the different phenotypes were identified. It is possible that
currently unknown modifiers, either in ABCA4 itself or
in other genes, play a role in the difference of severity
observed. From the data collected in this study, we propose
a classification of moderately severe or severe. Finally,
phenotypic assessment of the patient carrying c.6816+2T>A
suggests a mild or moderately severe effect of the variant. To

better classify the effect, further analysis is required to assess
the percentage of correct residual ABCA4 transcript.

ABCA4 founder mutations have been extensively
described in literature45–48 and are known to widely differ
between ethnic groups and geographic regions. The Pales-
tinian population has a particularly high incidence of
IRD-associated founder mutations, due to the presence of
geographically and culturally isolated settlements that origi-
nate from small founder populations. Consequently, many
of these villages have high consanguinity rates, which
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results in an enrichment of haplotype homozygosity and a
high number of founder mutations.44,49 Statistical analysis
of the AFs calculated for the patient and control cohorts
showed a significantly higher frequency of the variant in
probands compared to non-IRD individuals, supporting the
pathogenicity of the founder variant c.859-25A>G. Consid-
ering that we found 27 homozygous c.859-25A>G STGD1
cases in the Hebron Governorate that has approximately
1,000,000 inhabitants, and that not all IRD cases from this
area were investigated for the presence of this variant, we
can deduce a minimal AF of 0.0052 for c.859-25A>G, and
a minimal carrier rate of 0.0103 for this variant in healthy
individuals (i.e., 1/97 individuals). This is likely an overesti-
mate because of the high consanguinity levels observed in
the population. Nevertheless, knowledge of the carriership
of c.859-25A>G is relevant for genetic counseling in Pales-
tinian families living in Hebron.

It is of interest that despite its high frequency the vari-
ant was not previously detected, which is likely due to the
position of the variant in a BPS. Although the recognition of
the BPS by the splicing machinery is critical in RNA splic-
ing, because it leads to the formation of the lariat structure
that precedes intron excision from pre-mRNA, BPS variants
are scarce in literature compared to other variants affecting
splicing. Nevertheless, several examples of variants abolish-
ing the BP have been reported in hereditary diseases, such as
LCAT-associated fish-eye disease,50 Ehlers-Danlos syndrome
due to COL5A1 variants,51 hypophosphatasia due to variants
in ALPL52 and in hereditary cancer-associated genes, such
as XPC mutated in patients with xeroderma pigmentosum,53

and RB1 mutated in patients with retinoblastoma.54 Earlier
this year, the first BPS variant associated with non-syndromic
retinitis pigmentosa was described for BBS1.55 The rarity of
published pathogenic BPS variants is likely due to the diffi-
culties in identifying the BPS sites. Correct identification is
a challenge for two main reasons: the conserved motif and
the localization of BPS. Firstly, the consensus motif has been
identified as the extremely short and degenerate sequence
“yUnAy,”56 where y = a pyrimidine and n = any nucleotide.
In this sequence, only the A residue (position 0, correspond-
ing to the point of formation of the lariat structure) and the
U residue (at position −2) are highly conserved. Mutations
of these two residues cause BPS abolishment, leading to
splice defects, such as exon skipping or pseudo-exon inclu-
sion.50,57 Second, the majority of BPS have been identified
in a window of 18 to 44 nt upstream of the SAS, although
BPSs as far away as 400 nt are known.58

The sparse number of experimentally proven BPSs, both
wild-type and mutated, has resulted in additional challenges
in the development of effective tools to predict the impact of
variants upstream of SASs. The currently available prediction
tools perform poorly, and are mostly focused on the recogni-
tion of wild-type BPSs.59 In this study we show that SpliceAI,
given the right parameters, was able to correctly predict the
effect of the BPS variants on splicing. These results suggest
that SpliceAI is one of the best tools for putative splice
affecting variant prioritization, because it is able to flag vari-
ants independently of the biological cause of the expected
splicing disruption. Our results are in line with the recently
reported performance assessment of SpliceAI for intronic
ABCA4 splicing variants.60 Further confirmation and imple-
mentation of visualization tools to check the genetic context
around the predicted effects is still advisable. Nevertheless,
use of SpliceAI allows one to bypass more lengthy and spuri-
ous research of variants, which would otherwise entail the

use of multiple tools focused on predicting single aspects of
splicing, such as effects on NCSS, BPS, enhancer and silencer
motifs separately. As for analysis parameters, the window of
flanking sequences considered by the program has a signifi-
cant impact on the predicted splicing defects of a variant,
thus should be carefully taken into account. Both partial
intron inclusions observed in the in vitro splice assay were
predicted by SpliceAI, but a small window of analysis (e.g.,
±100 nt) would not have identified either of these inclusions
as they are located 113 and 660 nt upstream of the variant.
Notably, the considerable distance of the cryptic SASs also
prevented their detection in all other programs used in this
study. In particular, analysis of the effect of c.859-25A>G
using Alamut Visual prediction tools resulted in a reduction
of 1.9 in the predicted intron 7 SAS strength (wild-type, 3.7;
mutant 1.8 [range 0–21]) on GeneSplicer, which on its own
would not be considered sufficient to select the variant for
further testing.

In this study, the effect of the variant was assessed at
the RNA level using an in vitro splice assay using HEK293T
cells. There is ample evidence that this in vitro model is
able to correctly recapitulate splice defects affecting the
consensus splice site sequences at the junctions of exons
and introns.61 This is also true for almost all variants that
create new splice sites in introns or strengthen cryptic splice
sites in introns, resulting in the recognition by the splic-
ing machinery and pseudo-exon inclusion, exon elongation
or intron retention.12,13,17,62 Nevertheless, considering the
absence of retina-specific factors and the artificial nature of
the midigene system, it remains interesting to further vali-
date the results obtained in HEK293T cells in an alterna-
tive model. The use of induced pluripotent stem cells to
obtain patient-derived photoreceptor precursor cells or reti-
nal organoids, allows observation of the variant effect in a
context that is more similar to that of the patient. Retina-
specific pseudo-exon recognition was found for intronic
variants in ABCA4, creating new or strengthening existing
exonic splice enhancer motifs.16 The most frequent variant
associated with Leber congenital amaurosis, an intron 26
variant in CEP290, c.2991+1655A>G,was shown to enhance
a pseudo-exon RNA insertion in retinal organoids compared
to fibroblasts or EBV-immortalized B lymphocytes.34,35

Intronic variants resulting in aberrant splicing are good
targets for antisense oligonucleotide (AON)-based therapeu-
tic strategies. The use of AONs to modulate splicing and
obtain correct transcripts has been proven to be effective
in ABCA4.13,16,63–65 Regarding the treatment of the effects
of c.859-25A>G, the use of AONs might prove challenging,
since binding to the region upstream of the canonical SAS
comes with the risk of disrupting regulatory motifs and the
binding of auxiliary splice proteins. Considering the involve-
ment of two cryptic splice sites upstream of the BPS variant,
a potential rescue approach would be to target the new SASs
of the partial intron retention with AONs, which are unlikely
to affect exon 8 recognition by the splicing machinery. On
the other hand, it remains to be seen whether blocking these
new SASs would lead to a correct transcript. We hypothesize,
partially based on SpliceAI predictions, that this approach
may lead to more exon 8 skipping. Experimental testing of
potential AONs is needed to investigate this further.

Outside of AON-based rescue, other therapeutic
approaches that could be implemented are gene augmen-
tation or gene editing. Gene augmentation therapy is
successful for some retinal disorders (e.g. RPE65-associated
Leber congenital amaurosis or early onset RP)66 but remains
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challenging for STGD1. The relatively large size of the
ABCA4 transcript prevents delivery with a single adeno-
associated virus vector, which has a maximum packaging
capacity of about 5 kb. Multiple approaches are being
developed to bypass this issue (e.g. the use of a dual vector
system)67–70 and the implementation of nanoparticles, such
as non-viral gene therapy delivery system.67–70 An attractive
alternative to gene replacement for ABCA4 is RNA-editing,
which allows the correction of point mutations at the
transcript level with low risk of permanent off-target effects.
Unfortunately, currently only A>G and C>U corrections can
be obtained using engineered deaminase enzymes (such as
ADAR and APOBEC), neither of which are viable options
for our A>G variant.71–73

In conclusion, we identified a severe and frequent Pales-
tinian founder variant, c.859-25A>G, leading to a complex
splicing defect very likely due to the disruption of the BPS
in intron 7 of ABCA4. The high frequency of the variant
in the Palestinian population makes it highly relevant in
terms of genetic counselling, in particular in the Hebron
Governorate and in Jerusalem. Our study highlights the rele-
vance of the use of correct prediction tools to identify elusive
splice-altering variants, such as BPS variants, that have the
potential to strongly impact genetic diagnosis and genetic
counselling in patients affected by STGD1.
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