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Obesity is a worldwide prevalence metabolic disease causing significant eye problems. Body Mass Index 
is proved to not be a sufficient criterion to classify obesity. In this context, a diagnostic support system 
for determining obesity levels by using electroretinogram signals is designed. To do this, the discrete 
wavelet transform is applied to three different electroretinogram responses recorded from both eyes. The 
obtained wavelet coefficients’ size is reduced using statistical property. The designed dataset is used in 
artificial neural networks and artificial neural networks based particle swarm optimization models to 
classify obesity. We found that the average accuracy of the hybrid model is higher than the traditional 
model and the cone response is a highly effective response in obesity classification. This study is the first 
attempt to classify obesity levels based on electroretinogram signals and this study shows that obesity 
can be classified from electroretinogram signals.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Obesity, described by abnormal or excessive fat accumulation, 
is a major health problem of the developed and developing coun-
tries nowadays. In the outpatient clinic, body mass index (BMI) is 
a mostly preferred measurement method to classify obesity. BMI is 
defined as the ratio of the body weight in kilograms to the square 
of the height in meters [1,2]. In accordance with World Health 
Organization (WHO)’s quality standards, commonly accepted BMI 
ranges are normal, 18-25 kg/m2; overweight, 25-30 kg/m2; obese, 
30-40 kg/m2; morbid obese, 40-50 kg/m2; and super obese, greater 
than 50 kg/m2 [3]. It has been found out that obesity has long 
been associated with major negative health outcomes such as car-
diovascular disease, diabetes, depression, stroke, and even cancer 
[4–10]. Besides, the deleterious influences on vision system of obe-
sity lead to great variety of eye diseases including cataract, glau-
coma and macula [11–27].

On the other hand, ophthalmic electrophysiology tests such 
as Electrooculography (EOG), Electroretinography (ERG) and Visual 
evoked potential (VEP) are frequently used by ophthalmologists 
in the early diagnosis of eye diseases [28–32]. Among them, ERG 
shows mass response of the retina consisting light-sensitive cells 
(rod cells, cone cells and ganglion cells) to an uniform flash light 
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E-mail address: senyerirem@beun.edu.tr (İ.S. Yapici).
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0375-9601/© 2021 Elsevier B.V. All rights reserved.
[33,34]. It provides general information about retinal function and 
can reveal the functions of various cell types. Besides, it is a 
valuable diagnostic tool for diagnosing, monitoring and evaluating 
the effectiveness of therapeutic interventions for retinal diseases 
[35–38]. The interpretation of ERG signals is commonly performed 
by using five ERG responses (rod response, cone response, max-
imal combined response, 30 Hz flicker response and oscillatory 
potentials) defined by ISCEV (International Society for Clinical Elec-
trophysiology of Vision) standards. Within the scope of this study, 
rod response, cone response and maximal combined response have 
been used. Rod response recorded from rod cells is defined as the 
first signal observed after dark adaption. The maximal combined 
response is measured from rod and cone cells in the dark-adapted 
eye. Cone response is obtained from the cone cells after brighten-
ing adaptation is achieved [39,40].

Furthermore, the importance of decision support systems in 
medicine has been increasing day by day. These systems are a 
powerful tool for specialist physicians to diagnose diseases at early 
stage. In this context, in many studies, ERG signals have been uti-
lized for classifications based machine learning and data mining 
algorithms conducted for the diagnosis of eye diseases [31,41–48]. 
For example, Guven et al. proposed a diagnostic method based tra-
ditional artificial neural network (ANN) to detect macular diseases 
by using pattern ERG (PERG) signals [41]. Polat et al. suggested a 
hybrid automatic detection system based k nearest neighbor and 
support vector machine techniques to classify macular disease us-
ing PERG signals [43]. Miguel-Jimenez et al. classified glaucoma 
130
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Fig. 1. The general block diagram of the proposed automated decision support sys-
tem model.

by combining the properties extracted from the multifocal ERG 
(mfERG) signals by structural model analysis with radial-based ar-
tificial neural networks [31]. Boquete et al. preferred radial-based 
artificial neural networks with extreme learning algorithm to di-
agnose glaucoma by usage of morphological properties of mfERG 
signals [45]. Bagheri et al. used empirical mode approach and ANN 
to make diagnosis of the retinal diseases from ERG signals [46].

Literature surveys indicate that BMI alone is not sufficient to 
measure a person’s body composition [49–51]. Therefore, in a re-
cent study, the effects of obesity on two main components (‘a’ and 
‘b’ waves) of ERG signals are analyzed by Erkaymaz et al. They 
have analyzed the amplitudes and formation times of the waves 
based on statistical, time and time-frequency analysis for all obese 
groups. They have showed that the continuous wavelet transform 
is more successful to detect the effect of obesity classes on the 
waves [40]. On the other hand, to our knowledge, the classifica-
tion of obesity levels based ERG signals has not been handled in 
studies conducted so far. Therefore, in this study, an automated 
decision support system model has been proposed and the classi-
fication of obesity has been performed by usage of three different 
ERG responses (rod, cone and maximal combined responses).

The rest of the paper is organized as follows. Section 2 briefly 
gives information about the ERG data acquisition, pre-processing, 
feature extraction and methods used for classification. The results 
are introduced in Section 3, followed by the conclusion and dis-
cussion.

2. Models and methods

In this section, the ERG data acquisition, pre-processing and fea-
ture extraction methods used in the proposed automated decision 
support system have been mentioned in detail. The general block 
diagram of the proposed system is illustrated in Fig. 1.

2.1. ERG dataset

The experimental study has been performed with forty-seven 
volunteers, aged between 18–70, with normal, overweight, obese, 
morbid obese and super obese. Before the enrollment of the study, 
a written informed consent is provided from each volunteer ap-
proved by the local ethics committee at Zonguldak Bulent Ece-
vit University. The experimental studies are performed in accor-
dance with ISCEV standards and all essential explanations about 
the experimental procedure are given to the volunteers in advance. 
Furthermore, ophthalmological examinations of each volunteer are 
checked by an ophthalmologist.

ERG signals have been recorded in a well-equipped laboratory 
with the electrooculography “Metrovision MonPackOne” supplied 
by Zonguldak Bulent Ecevit University Scientific Research Project. 
Data acquisition considering ISCEV standards has been realized by 
using Dawson-Trick-Litzkow plus (DTL), reference and ground elec-
trodes placed into the lower conjunctival sac of previously each 
dilated eyes, the sides and center of the forehead, respectively. 
2

Fig. 2. Three-level discrete wavelet decomposition.

Then, firstly, the electrical responses of both eyes towards the light 
stimuli have been recorded by adopting 20 minute dark adaptation 
period. Same procedures have been repeated after 15 minutes of 
light adaptation; and hereby, the necessary recordings have been 
taken. Thus, the dataset recorded from forty seven volunteers has 
been created.

2.2. Feature extraction

2.2.1. Discrete Wavelet Transform (DWT)
The DWT is a powerful time-frequency tool for analyzing non-

stationary signals such as biomedical signals. Because of its low 
computational cost and easy usability, the DWT has been fre-
quently utilized in classification problems of biomedical signals to 
extract the required features [52]. In this method, signals are de-
composed into a set of wavelets that are obtained by using low 
and high pass filters, based on the coefficients described below:

A j,k =
∑

l

gl−2k A j−1,l (1)

D j,k =
∑

l

hl−2k A j−1,l (2)

where j is the level of the transformation, k is the total number 
of coefficients, A j,k and D j,k represents the scaling and wavelet 
coefficients, respectively. g and h, in turn, denotes low pass fil-
ter and high pass filter coefficients of scaled and wavelet functions 
depending on a given wavelet type; and l represents the width of 
the filters [53–56]. Fig. 2 shows a three level DWT decomposition. 
The high frequency components of the raw signals are removed by 
the low-pass filters, and thus approximation coefficients (A j ) are 
obtained. On the other hand, high pass filters remove the low fre-
quencies of the raw signal to detect detail coefficients. Hereby, the 
raw signal is separated to a shifted and scaled version of a chosen 
wavelet type obtained at level L. At each level, the obtained scaled 
and wavelet coefficients are sampled down by two, and thus series 
half the length of the filtered series are acquired. The repetition 
of the process is terminated as the desired wavelet decomposition 
level is reached [3,55,56].

In DWT, the choice of wavelet type is great of importance due 
to having different properties of each. Haar, Morlet, Mexican hat 
and Daubechies wavelets are some popular wavelet types. In this 
study, the extraction of ERG signals into sub-bands has been car-
ried out by using a four level DWT with fourth-order Daubechies 
(db4) wavelet type that is widely utilized for biomedical signals in 
literature.

2.2.2. Statistical features
The dimensions of the coefficients extracted from DWT are re-

duced by applying the six different statistical properties listed in 
Table 1: the mean absolute value (μ), average power (λ), standard 
deviation (σ ), skewness (φ), kurtosis (ϕ) of the signal coefficients 
in every sub-band and ratio of the absolute mean (χ ) values of 
signal coefficients of adjacent sub-bands [57,58].
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İ.S. Yapici, O. Erkaymaz and R.U. Arslan Physics Letters A ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
Table 1
Features and their equations.

Feature Equations

μ μ = 1
M

∑M
j=1 |y j |

λ λ =
√

1
M

∑M
j=1 y2

j

σ σ =
√

1
M

∑M
j=1(y j − μ)2

φ φ =
√

1
M

∑M
j=1

(y j−μ)3

σ 3

ϕ ϕ =
√

1
M

∑M
j=1

(y j−μ)4

σ 4

χ χ =
∑M

j=1 |y j |∑M
j=1 |z j |

2.2.3. Artificial Neural Network (ANN)
ANN is a topology inspired from the biological brain networks, 

it consists of adaptive units (neurons) and interconnections asso-
ciated with synaptic weights between neurons. In creating ANN 
architecture, these neurons are connected as feed forward or back-
ward and thus, different ANN topologies can be obtained. Multi-
layer perceptron (MLP) is one of the basic and commonly used 
ANN topology in the literature [59]. In MLP, each neuron is con-
nected to other neurons by means of directed feed forward com-
munication links between layers. The MLP is generally composed 
with three layers: input, output and hidden layers. In the train-
ing process of MLP, the error propagated as backward is obtained 
by the knowledge transmitted between layers. This processing is 
iterated up to approach the desired output with minimum error 
by using different learning algorithms such as back-propagation, 
Quasi-Newton and Levenberg-Marquardt [60]. In this study, we de-
signed a MLP topology with one hidden layer and the designed 
topology is trained by using Levenberg-Marquardt algorithm. The 
number of neurons in the hidden layer is determined from 8 to 20 
neurons by performing 100 trials with a minimum error criterion 
(MSE).

2.2.4. Artificial Neural Network based Particle Swarm Optimization 
(ANN-PSO)

ANN is commonly a tool used for regression and classification 
with high generalization capability. Therefore, it is preferred espe-
cially to classify complex (nonlinear) biomedical signals [61–66]. 
The main advantage of ANN is easy to use and low computational 
cost. They have also ability to detect complex relationship maps 
between inputs/outputs in nonlinear signals. On the other hand, 
needing more training data, slow training process and overfitting 
problem are the major disadvantages. To overcome these disadvan-
tages, a particle swarm optimization (PSO) based approach is used 
in proposed ANN model. The designed ANN-PSO model consists of 
traditional MLP architecture, whose parameters are calculated with 
PSO algorithm. The statistical features obtained from feature ex-
traction process are provided as input to the model. The designed 
ANN model has three layers: an input layer, a hidden layer and an 
output layer. The model has a 29-H–1 network topology, where H 
defines the number of the hidden neuron. We apply training pro-
cess on the model with 100 trials by using H = 8, 10, . . . , 20 to 
determine the number of the neurons in the hidden layers. The 
obtained ANN architecture’s parameters (weights and biases) are 
used in PSO algorithm.

PSO is the most popular swarm (population) intelligence algo-
rithm, inspired from the social behavior of animals searching for 
food such as bird flocking or ant colonies. PSO performs optimiza-
tion by a particle swarm which is updated at each iteration for 
each time-step. Each particle shifts towards the direction of its 
own history best position and global best position, to converge 
and acquire the global optimum. The mathematical expression of 
updated velocity and position vectors of particles are as follows:
3

Fig. 3. Three-level discrete wavelet decomposition.

V i,d(k + 1) = W∗V i,d(k) + c∗
1r∗

1(Xpbest(k)

− Xi,d(k)) + c∗
2r∗

2(Xgbest(k) − Xi,d(k))
(3)

Xi,d(k + 1) = Xi,d(k) + V i,d(k + 1) (4)

where V i,d(k) and Xi,d(k) denote the velocity and position vec-
tors of the “d”th dimension of “i”th particle at the “k”th iteration, 
respectively [67]. Xp best represent the p best position of the par-
ticle i, whereas Xg best gives the g best position of the population. 
W is the inertia weight which is used for balancing global and 
local values. The acceleration coefficients (c1 and c2) are used to 
control the effects of pbest and gbest on the new velocity and are 
tuned to 2. r1 and r2 are random numbers in the range of [0, 1]. 
b denotes the constraint factor that control the weight of the ve-
locity. In the model, each particle is defined by the parameters w
and b. Fig. 3 shows the flowchart of an ANN-PSO algorithm.

2.2.5. The performance measures
The performance of studies based on machine learning tech-

niques have been evaluated by using diverse methods, such as re-
substitution method, hold out method and leave one out method 
[3]. Within this study, the hold out method has been used. In this 
context, the data set is independently and randomly divided into 
two groups as training (80%) and testing (20%). Then, statistical 
measurements namely accuracy (ACC), sensitivity (SEN) and speci-
ficity (SPE) are calculated from confusion matrix for benchmarking 
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Fig. 4. The DWT coefficients obtained from fourth-level Daubechies wavelet (db4) of normal ERG signal; (a) rod response of the right eye, (b) maximal combined response of 
the right eye, (c) cone response of the right eye, (d) rod response of the left eye, (e) maximal combined response of the left eye, (f) cone response of the left eye.
designed models. SEN gives the ratio correctly classified samples 
to the total number of positive samples, whereas SPE is the ra-
tio of correctly classified negative samples to the overall negative 
sample’s count. ACC gives the proportion of all rightly classified 
positive samples to the total sample’s count. The mathematical for-
mulas of these measurements can be expressed as [68,69].

Accuracy(%) = T P + F P

T P + T N + F P + F N
(5)

Sensitivity(%) = T P

T P + F N
(6)

Specificity(%) = T N

T N + F P
(7)

where T P , T N , F P and F N stand for true positive, true negative, 
false positive and false negative, respectively.
4

3. Result and discussion

We develop a hybrid model to classify obesity levels from rod, 
maximal combined and cone responses of ERG signals recom-
mended by ISCEV. For this aim, we firstly apply feature extracting 
process based on DWT for three different responses taken from 
both right and left eyes. During this process, the approximation 
and detail coefficients have been calculated by using fourth-level 
Daubechies (db4) wavelet. The calculated coefficients for both eyes 
of normal and obese subjects as example are presented in Fig. 4
and 5, respectively.

Then, the large size coefficients obtained as a result of fea-
ture extraction performed with DWT for each ERG response are 
reduced by using six different statistical properties (the mean ab-
solute value (μ), average power (λ), standard deviation (σ ), skew-
ness (φ), kurtosis (ϕ) of the signal coefficients in every sub-band 
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Fig. 5. The DWT coefficients obtained from db4 of obese ERG signal; (a) rod response of the right eye, (b) maximal combined response of the right eye, (c) cone response of 
the right eye, (d) rod response of the left eye, (e) maximal combined response of the left eye, (f) cone response of the left eye.
and ratio of the absolute mean (χ) values of signal coefficients 
of adjacent sub-bands). Thus, we have designed a dataset with 29 
features obtained from statistical properties for each ERG signal. 
A basic ANN model consisting of the one input, one hidden layer 
and one output layers using these properties as input is created. 
Then, we apply training process on ANN model created with 29-
H-1 architecture by using H = 8 . . . 20 for designed dataset with 
80% training data, 20% testing data. The neuron number of hidden 
layer is calculated separately for rod, maximal combined and cone 
responses of ERG signals recorded from both eye. The results are 
presented in Fig. 6.

As seen Fig. 6, for right eye, basic ANN architecture is 29-12-
1, 29-8-1 and 29-10-1 for rod, maximal combined and cone re-
sponses, respectively. Besides, for left eye, basic architectures of 
rod, maximal combined and cone responses are, in turn, 29-14-1, 
29-8-1 and 29-18-1.
5

After the best ANN topologies are acquired for each ERG re-
sponses of left and right eyes, we analyze performances of these 
ANN architectures with the dataset randomly divided into ratio 
of 80 : 20 for training and testing, respectively, by running 100 
trials. The statistical performances of the designed models for clas-
sifying the obesity levels for each ERG response are computed. 
Finally, we apply PSO optimization process on the network topolo-
gies and calculate the best ANN parameters (weights and biases) 
of the networks. The networks optimized with PSO are analyzed 
with the designed dataset. Statistical performance results for both 
ANN and PSO optimized ANN (ANN-PSO) are given for both eyes 
in Tables 2–4.

For the rod response in right eye (Table 2), the ANN model 
shows more successful results (average accuracy = 93.62%) in 
the classification of the obesity levels towards normal (85.11%) 
and overweight subjects (82.98%). The ANN-PSO model exhibits 
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Fig. 6. The simulation results of topology determination process; (a) rod response of the right eye, (b) maximal combined response of the right eye, (c) cone response of the 
right eye, (d) rod response of the left eye, (e) maximal combined response of the left eye, (f) cone response of the left eye.

Table 2
Statistical performance of ANN-PSO model for rod response of both eyes.

Number of 
hidden layer 
neuron

Obesity 
classes

Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%)

Right eye
ANN 12 Normal 60 97.30 85.11

Overweight 60 91.89 82.98
Obese 90 89.19 95.74
Morbid obese 80 89.19 93.62
Super obese 85.71 95.45 91.49
Average 75.14 93.64 84.79

ANN-PSO 12 Normal 90 89.19 89.36
Overweight 80 97.30 93.62
Obese 70 97.30 91.49
Morbid obese 80 91.89 89.36
Super obese 85.71 100 97.87
Average 81.14 95.14 92.34

Left eye
ANN 14 Normal 80 83.78 82.98

Overweight 70 97.30 91.49
Obese 70 100 93.62
Morbid obese 90 97.30 95.74
Super obese 85.71 95 93.62
Average 79.14 94.68 91.49

ANN-PSO 14 Normal 70 100 93.62
Overweight 70 94.59 89.36
Obese 90 97.30 95.74
Morbid obese 100 94.59 95.74
Super obese 85.71 92.50 91.49
Average 83.14 95.80 93.19
6
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İ.S. Yapici, O. Erkaymaz and R.U. Arslan Physics Letters A ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Table 3
Statistical performance of ANN-PSO model for maximal combined response of both eyes.

Number of 
hidden layer 
neuron

Obesity 
classes

Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%)

Right eye
ANN 8 Normal 80 100 95.74

Overweight 90 94.59 93.62
Obese 90 94.59 93.62
Morbid obese 80 100 95.74
Super obese 85.71 92.50 91.49
Average 85.14 96.34 94.04

ANN-PSO 8 Normal 80 97.30 93.62
Overweight 90 97.30 95.74
Obese 90 89.19 89.36
Morbid obese 80 100 95.74
Super obese 100 100 100
Average 88 96.76 94.89

Left eye
ANN 8 Normal 80 89.19 87.23

Overweight 90 94.59 93.62
Obese 100 97.30 97.87
Morbid obese 50 94.59 85.11
Super obese 57.14 95 89.36
Average 75.43 94.14 90.64

ANN-PSO 8 Normal 60 97.30 89.36
Overweight 80 94.59 91.49
Obese 90 89.19 89.36
Morbid obese 80 94.59 91.49
Super obese 85.71 97.50 95.74
Average 79.14 94.64 91.49

Table 4
Statistical performance of ANN-PSO model for cone response of both eyes.

Number of 
hidden layer 
neuron

Obesity 
classes

Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%)

Right eye
ANN 10 Normal 100 86.49 89.36

Overweight 60 94.59 94.59
Obese 70 94.59 89.36
Morbid obese 90 97.309 95.74
Super obese 71.43 100 95.74
Average 78.29 94.59 91.49

ANN-PSO 10 Normal 80 100 95.74
Overweight 100 91.89 93.62
Obese 90 91.89 91.49
Morbid obese 80 97.30 93.62
Super obese 71.43 100 95.74
Average 84.29 96.22 94.04

Left eye
ANN 18 Normal 100 97.30 97.87

Overweight 90 100 97.87
Obese 80 94.59 91.49
Morbid obese 70 94.59 89.36
Super obese 85.71 95 93.62
Average 85.14 96.30 94.04

ANN-PSO 18 Normal 100 94.59 95.74
Overweight 80 94.59 91.49
Obese 80 97.30 93.62
Morbid obese 100 100 100
Super obese 85.71 100 97.87
Average 89.14 97.30 95.74
better performance above average accuracy (92.34%) in the pre-
diction of overweight (93.62%), obese (91.49%) and super obese 
(97.87%) subjects in respect to normal and morbid obese subjects 
(89.36%).
7

On the other hand, in the rod response of the left eye, the ANN 
model similarly gives more successful results (average accuracy =
94.33%) in classification of the obesity levels in accordance with 
normal (85.11%) and overweight subjects (82.98%). The ANN-PSO 
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model also presents more successful results (average accuracy =
94.32%) in classifying of obesity levels towards normal (93.62%) 
and overweight subjects (89.36%).

For the maximal combined response in right eye (Table 3), the 
ANN model shows best performance for normal and morbid obese 
subjects (95.74%) and also presents performance below average ac-
curacy (94.04%) for overweight (93.62%), obese (93.62%) and super 
obese (91.49%) subjects. Performance of the ANN-PSO model for 
normal (93.62%) and obese (89.36%) subjects are acquired below 
average accuracy (94.89%). For the maximal combined response in 
left eye, the ANN model has above average accuracy performance 
(90.64%) to classify overweight (93.62%) and obese (97.87%) sub-
jects, the ANN-PSO model has below average accuracy (91.49%) 
performance for normal and obese subjects (89.36%).

For the cone response in right eye (Table 4), the ANN model 
shows best performance for morbid and super obese subjects 
(95.74%) and also exhibits performance below average accuracy 
(91.49%) for normal (89.36%), overweight (87.23%) and obese 
(89.36%) subjects. Performance of the ANN-PSO model for nor-
mal and super obese subjects (95.74%) are observed above average 
accuracy (94.04%). On the other hand, in the cone response of 
left eye, the ANN model has above average accuracy performance 
(94.04%) to classify of normal and overweight subjects (97.87%), 
whereas the ANN-PSO model has below average accuracy (95.74%) 
performance for overweight (91.49%) and obese (93.62%) sub-
jects.

4. Conclusion and discussion

To diagnose obesity levels efficiently, this study has intro-
duced an automated decision support system model by using elec-
troretinogram signals since BMI is not a sufficient criterion to de-
termine the obesity. Contrary to general approaches based on BMI 
in the literature, it has been shown that obesity can be predictable 
of the obesity levels from rod, maximal combined and cone re-
sponses of electroretinogram signals. To this aim, we firstly analy-
sis electroretinogram signals responses with DWT and then, design 
ANN and hybrid ANN-PSO models.

Results show that hybrid ANN-PSO model exhibits more robust 
character than traditional ANN model in discriminating the five 
different classes of obesity by using from rod, maximal combined 
and cone responses of electroretinogram signals. In compared with 
ANN model performance, the hybrid model increases about 2% of 
classifying score in rod response of both eyes (92.76% of average 
accuracy). The model enhances about 0.1% and 1% of classifying 
score in maximal combined response of right (94.89% of average 
accuracy) and left (91.49% of average accuracy) eyes, respectively. 
In cone response, the classifying score is obtained about 4.

In sum, the proposed hybrid model shows that the obesity lev-
els can be effectively detected from there different electroretino-
gram signal responses. In addition, the cone responses are more 
proper than other responses (rod and maximal combined re-
sponses) to classify of disease from electroretinogram signals.

The main advantage of the current study is that classification of 
obesity levels is carried out by using ERG responses. Therefore it is 
proved that obesity is related with ERG. On the other hand, the 
limitation of the study includes lack of data. The designed model 
must be analyzed on the greater dataset including a wider age 
range, because the obesity is encountered at almost all ages. As 
future work, different classification methods will be analyzed with 
new features to obtain more accuracy performance.
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