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From the Section Editor: The next two installments in the JNO “Disease of the Year: Multiple Sclerosis” series focus on lessons that can be
learned form the afferent visual pathway, as a putative model of MS. In their article entitled, “Visual evoked potentials as a biomarker in
multiple sclerosis and associated optic neuritis” Leocani and colleagues highlight the role of visual evoked potential (VEP) testing as
a means of capturing the effects of demyelination, remyelination, and associated neuroaxonal injury in the central nervous system (CNS).
Conjointly, Horton and Bennett discuss the acute management of optic neuritis, which is aptly described as an “evolving paradigm.” In
their state-of-the art overview of the topic, these authors explore the spectrum of inflammatory optic neuropathies, with emphasis on
clinical features, neuroimaging findings, and serological markers that help refine diagnosis, and target appropriate treatment strategies.
When considered holistically, these reviews prompt us to consider how VEP and other surrogate endpoints can be used to differentiate
subtypes of optic neuritis that may ultimately herald a wide variety of CNS inflammatory disorders.

Visual Evoked Potentials as a Biomarker in Multiple
Sclerosis and Associated Optic Neuritis
Letizia Leocani, MD, Simone Guerrieri, MD, Giancarlo Comi, MD

Abstract: Multiple sclerosis (MS) is an inflammatory, degen-
erative disease of the central nervous system (CNS) character-
ized by progressive neurological decline over time. The need for
better “biomarkers” to more precisely capture and track the
effects of demyelination, remyelination, and associated neuro-
axonal injury is a well-recognized challenge in the field of MS. To
this end, visual evoked potentials (VEPs) have a role in as-
sessing the extent of demyelination along the optic nerve, as
a functionally eloquent CNS region. Moreover, VEPs testing can
be used to predict the extent of recovery after optic neuritis
(ON) and capture disabling effects of clinical and subclinical
demyelination events in the afferent visual pathway. In this
review, the evolving role of VEPs in the diagnosis of patients
with ON and MS and the utility of VEPs testing in determining
therapeutic benefits of emerging MS treatments is discussed.
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BACKGROUND

M ultiple sclerosis (MS) is a chronic inflammatory
demyelinating disease of the central nervous system

(CNS) and the leading cause of neurologic disability in

young adults. Acute optic neuritis (ON), reported as the
onset manifestation in up to one-third of MS cases, may
affect up to 70% of patients with MS during the course of
their disease (1–3). In addition, involvement of the retro-
chiasmatic visual pathway may impair visual function.

Full-field visual evoked potentials (ff-VEPs) have been
performed in clinical practice since the 1970s to assess
conduction along the visual pathways with diagnostic,
monitoring and prognostic purpose. Visual evoked
potential guidelines were updated in 2010 by the Interna-
tional Federation of Clinical Neurophysiology (4) and in
2016 by the International Society for Clinical Electrophys-
iology of Vision (ISCEV) (5). In 1994, Baseler et al (6)
described the technique of multifocal VEPs (mf-VEPs),
which tested discrete portions of the visual field (7). Since
then, in addition to glaucoma (8), mf-VEPs have been used
to assess other optic neuropathies and neurological condi-
tions including MS.

This review examines the current and potential future
applications of VEPs as a biomarker in MS and associated
ON.

EVIDENCE ACQUISITION

We searched PubMed database up to April 30, 2018, using
the terms “visual evoked potentials AND multiple sclero-
sis,” “visual evoked potentials AND optic neuritis.” For
clinical trials, the https://clinicaltrials.gov/webpage was
searched.
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VISUAL EVOKED POTENTIALS IN THE
DIAGNOSIS OF MULTIPLE SCLEROSIS AND
OPTIC NEURITIS

VEPs are used to confirm the presence of visual pathology
or to detect subclinical asymptomatic involvement of the
visual pathway. The presence of increased latency with
preserved waveform morphology has been considered a sign
of a demyelinating process (9). Early studies showed a prev-
alence of increased VEP latency in up to 50%–70% of
patients with MS without visual complaints (10–12). More
recently, the sensitivity of VEP in patients without a history
of ON has been reported to be 20%–50% (13,14). How-
ever, this sensitivity is, in part, dependent on the timing of
the testing. VEPs have been reported as abnormal in 90% of
patients tested within 6 months from onset of ON symp-
toms, but in about 70% when more than 2 years have
elapsed (15). Naismith et al (16) reported a sensitivity of
81% for ff-VEPs in 96 eyes experiencing ON at least 6
months previously with similar findings reported by Di
Maggio et al (17). Fredriksen and Petrera (18) reported
ff-VEPs to be abnormal in 77% of acute ON eyes at onset
and in 89% at one or more follow-up sessions, with pro-
gressive normalization in 19% over 1 year. The overall
sensitivity in MS has been reported up to 85% (9), with
differences according to disease duration and course, reach-
ing 90% in progressive MS (19) and ranging from 25% to
50% in clinically isolated syndrome (CIS), regardless of the
initial neurologic signs and symptoms (20–23).

Normal ff-VEPs cannot exclude the presence of a lesion
involving only a portion of optic nerve fibers, or lesions with
short longitudinal extension without a significant latency
increase (9), or partial retrochiasmal lesions.

VEPs were included in the diagnostic criteria of primary
progressive MS in the original McDonald criteria (24) and
in the first revision (25), but not in subsequent revisions
(26,27). The most recent McDonald criteria include VEPs
as a means to detect of a demyelinating process in patients
presenting with visual symptoms (26,27).

Multifocal VEPs were reported as more sensitive
compared with standard ff-VEPs both in symptomatic
and asymptomatic eyes of patients with MS (28,29) and
with promising results in patients with CIS (30). In 26
individuals with unilateral ON, ff-VEPs abnormalities were
found in 73% and mf-VEP in 89% and with superior
performance in detecting small or peripheral visual field
defects (28). In non-ON eyes of 29 patients with CIS,
mf-VEP amplitude was abnormal in 48.3% and latency
in 20.7% (30). These features have been confirmed in
a cohort of 145 patients with MS with 65% abnormal
responses in non-ON eyes and up to 90% in ON eyes
(31). Similar results had been previously reported by Fraser
et al (32) with a different testing equipment (Accumap;
ObjectiVision, Sydney, Australia), with mf-VEPs abnormal
in 97.3% of ON eyes (previous or acute), whereas Nebbio-

so et al (33) found ff-VEPs more sensitive than mf-VEPs
(using the Vision Monitor MonPack 120 by Metrovision)
in a cohort of 24 patients with acute ON (90.9% vs 77.2%,
respectively). These discrepancies may be related to differ-
ences in equipment and techniques used as well as patient
selection.

VEPs have been used to differentiate MS from other
inflammatory CNS diseases such as neuromyelitis optica
spectrum disorder (NMOSD). Two studies found that
P100 latency was more delayed in MS than in NMOSD,
with greater proportion of absent responses and less
frequent subclinical alterations in the latter group (34,35).
These data were obtained in patients of Afro-Brazilian and
Japanese origin. By contrast, a study of white patients found
more heterogeneous VEP abnormalities in NMOSD (36).

PROGNOSTIC ROLE OF VISUAL EVOKED
POTENTIALS IN MULTIPLE SCLEROSIS AND
OPTIC NEURITIS

The prognostic value of VEPs can be assessed in 3 ways:
predicting the degree of optic nerve damage and, thus, the
long-term visual outcome; predicting the risk of developing
MS in patients with CIS; and predicting future disability in
patients who already have a diagnosis of MS.

After an ON attack, the final visual outcome is not
totally predictable by ff-VEPs recorded in the acute phase.
Yet, the presence of preserved cortical responses, despite
increased latency, is an indicator of partial demyelinating
damage suggesting good visual recovery. However, the
absence of cortical responses is not necessarily associated
with a poor functional outcome, potentially indicating only
transient conduction block (37). The persistence of mor-
phological alterations of ff-VEPs beyond 4 months is pre-
dictive of a long-term visual impairment. The reappearance
of initially absent waveforms, despite their delay in latency,
has favorable prognostic implications (38). Although optic
nerve lesions tend to remyelinate at a specific rate, smaller
lesions seem to recovery more completely with respect to
VEP waveform morphology (39). Brain plasticity also seems
to play a major role in the recovery of vision after ON (40),
possibly offsetting some of the effects of optic nerve damage
and mitigating the functional consequences of optic nerve
dysfunction.

Several studies over the past 30 years have explored the
association between ff-VEPs and subsequent development
of MS with variable conclusions. From some studies of the
1980s and early 1990s, a significant association between
ff-VEPs alteration in patients with various initial neurolog-
ical manifestations and MS development emerged, with risk
increasing from 2.5- to 9-fold (41–43). A prospective mul-
ticenter study on 82 patients with suspected MS found only
mild positive and negative predictive values (26% and 62%,
respectively) in relation to ff-VEP results and development
of MS over a mean follow-up of 2.9 years (20). However,
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the inclusion of a not irrelevant proportion of patients with
visual symptoms limited ff-VEP validation as biomarker of
dissemination in space (20). A retrospective study of 243
patients with CIS diagnosed between 2000 and 2013 eval-
uated the prognostic role of multimodal evoked potentials
with other multiple biomarkers, including magnetic reso-
nance imaging (MRI) and cerebrospinal fluid data. The
frequency of altered ff-VEPs did not differ between patients
who did or did not develop MS (48.8% vs 49.1%, respec-
tively) (22). Some investigators also analyzed if specific fea-
tures of VEP responses in the early phase of ON had any
prognostic value. Two studies using mf-VEPs found an
increased risk of MS conversion in patients with significant
increased latency associated with a reduction in amplitude
(44,45), whereas another did not identify a relationship
between ff-VEP after ON and development of MS (46).
Patients with MRI findings placing them at higher risk for
MS showed higher mean latency and lower mean amplitude
values than low-risk patients (no demyelinating lesions on
MRI) (47). This observation was supported by another
study including 87 patients with ON, which demonstrated
progressive deterioration over the first 12 months after ON
episode of both amplitude and latency in fellow eyes to be
highly suggestive of MS (48).

The cross-sectional and longitudinal correlation between
VEPs and global and visual disability has been explored
with conflicting evidence (19,37,45–51), because of differ-
ences in disease duration and variation in the definition of
impairment, especially when assessing visual function. Mild
visual pathway involvement may not alter visual acuity but
affects other parameters of visual perception. A study on 21
patients with ON found a correlation between the persis-
tence of conduction slowing (VEP latency) and motion
perception abnormalities (52). Concerning global disability,
it is important to point out the small impact of visual
function has on the EDSS score. In a cohort of 28 patients
with MS and mf-VEPs available, median EDSS was found
to significantly differ between patients with normal or
abnormal mf-VEPS amplitude values (53); in another
report, a significant correlation was identified between the
signal-to-noise ratio of mf-VEP amplitude and EDSS in 28
patients with clinically definite MS (54). Many of these
studies also attempted to assess VEPs to predict disability,
finding only moderate correlation between ff-VEPs and
subsequent EDSS scores (19,49–51).

VISUAL EVOKED POTENTIALS TO MONITOR
MULTIPLE SCLEROSIS AND
OPTIC NEURITIS

Can evoked potentials, including VEPs, be used to monitor
the natural history of MS and the potential effect of
therapeutic interventions? The answer to this question
should be cautiously interpreted because of the physiolog-
ical variability over time of neurophysiological parameters:

P100 waveform of ff-VEPs has a very good reproducibility
in the general population, but there is a higher test–retest
variability in patients with MS because of the complex
interplay between demyelinating, remyelinating, and neu-
rodegenerative processes (55,56). Therefore, the use of
robust criteria to define the longitudinal changes of the
visual response is crucial. Despite these concerns, there is
evidence of overall reproducibility of VEPs in both single
and multicenter studies (57,58). In this regard, mf-VEPs
were reported as more reproducible than standard ff-VEPs
(58), particularly considering waveform amplitude (59)
with possible implications for their use as a correlate of
neuroaxonal damage, as compared to latency, which is con-
sidered a measure of the demyelination extent.

Although several studies identified either no or equivocal
correlations between the evolution over time of ff-VEPs and
global or visual disability (19,55,60), other reports docu-
mented good correlations between neurophysiologic meas-
ures and clinical status (49,61–63). The explanation for
these differing results may lie in the redundancy of the
CNS, with neurophysiological alterations not necessarily
accompanied by a concomitant clinical abnormality. How-
ever, these changes may represent a reduction of the func-
tional reserve of a given pathway and have a negative
prognostic connotation. In addition, there is a “ceiling
effect” (disappearance of the waveform), particularly evident
for ff-VEPs and limiting their usefulness in monitoring
patients with advanced disease (19).

VEPs have been used as primary or secondary outcome
measures in clinical trials, testing the effect of putative
remyelinating and neuroprotective agents. The visual
pathway has been proposed as a reliable model to uncover
the mechanisms of CNS damage (64–66). Full field-VEPs
were a secondary outcome measure in a double-blind, ran-
domized, placebo-controlled trial testing the effect of IVIg
in 68 patients with acute ON: no effect on ff-VEP latency
was found. However, only average latency values were used
between in the 2 groups (67). Full field-VEPs were used to
test the effect of simvastatin given within 4 weeks from ON
onset, with significant advantage of active treatment vs pla-
cebo on mean latency and amplitude values; however some
differences in terms of VEPs response could be already out-
lined at baseline (68). The RENEW trial, as well as other
previous phase 2 studies on erythropoietin and autologous
mesenchymal stem cells, emphasized the importance of
interindividual variability and variation over time of ff-
VEP response, when gauging the therapeutic effect of a med-
ication (69–71). The ReBUILD study documented a poten-
tial remyelinating role of clemastine fumarate in MS
patients with a reduction in ff-VEP latency as positive pri-
mary outcome (72). Phenytoin administered within 2 weeks
from ON onset was associated with a significant reduction
in retinal nerve fiber layer (RNFL) and macular volume loss
over time, without significant effect on ff-VEP parameters
(73). The authors of this study concluded that more
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sensitive measures of visual conduction such as mf-VEPs
should be used in future trials (73). This latter technique
has been included in a substudy of the RENEW trial (74)
demonstrating anti–LINGO-1 treatment to prevent mf-
VEP amplitude loss in the fellow eyes of patients with
unilateral ON.

VISUAL EVOKED POTENTIALS
COMPARISON WITH OTHER MEASURES

In general, good correlations between ff-VEP and mf-VEP
parameters in MS and ON have been reported (28,29).
Considering other measures, early studies in the 1970s
and 1980s pointed out a limited correlation between ff-
VEPs (in particular latency) and final visual acuity after
an ON episode. However, better correlations do exist with
other visual function tests such as visual field examination,
color vision, and perception latency (75,76). Similarly, an
association between mf-VEPs latency and visual acuity has
been described in the acute phase of ON (56) but in the
absence of any with visual recovery (45). Other studies
identified a correlation in patients with MS between mf-
VEP parameters and low-contrast visual acuity (77) as well
as with contrast sensitivity (77,78). The multifocal tech-
nique has been suggested as a possible measure of the visual
field (79) with mf-VEPs showing a higher sensitivity than
and automated perimetry (mainly Humphrey visual field)
(53,77,80,81).

Several studies combined VEPs testing with retinal
structural measures using optical coherence tomography
(OCT), to explore the relationship between demyelination
and neuroaxonal degeneration. Good correlations between
VEPs amplitude and RNFL thickness have been found for
both ff-VEPs (82,83) and mf-VEPs (84,85). The latter
technique also showed a high topographic correspondence
with RNFL sectorial analysis. Several investigators identified
a correlation between RNFL and ganglion cell layer thick-
ness and VEP latency, especially in non-ON eyes (83,86–
89), suggesting chronic subclinical demyelination may lead
to progressive axonal loss. The relationship between demy-
elination and subsequent axonal loss seems instead to be less
certain after ON (90–92). Comparative studies have re-
ported a higher sensitivity in detecting abnormalities with
ff-VEPs over OCT in patients with ON (16), MS (17), and
CIS (93).

VEPs have been correlated with MRI findings, of both
the optic nerve and the brain. At the optic nerve level, good
correlations have been found between diffusion tensor
imaging (DTI) and amplitude for ff-VEPs (94) and mf-
VEPs (95,96). Less certain is the relationship between mag-
netization transfer imaging and VEP latency (97–102), sug-
gesting magnetization transfer imaging may be not entirely
specific for myelin. A more robust correlation has been
described between VEPs latency and T2-STIR optic nerve
lesion length (103,104). In patients with MS, mf-VEPs

latency was found to correlate with optic radiation lesion
load and DTI measures in eyes without previous ON, indi-
cating the presence of retrochiasmal and, in particular, ret-
rogeniculate lesions (105). Finally, mf-VEPs amplitude,
analyzed for separate contralateral visual hemifields after
acute ON, correlates with optic radiation DTI measures,
suggesting the possibility of anterograde trans-synaptic
degeneration (106,107).

OTHER VISUAL EVOKED
POTENTIAL TECHNIQUES

It has been speculated that pattern-reversal VEPs to colored
checks may be more useful than traditional black and white
checks in differentiating the optic neuropathy of ON from
that of glaucoma (108). However, the comparison of VEPs
obtained in 30 patients with MS with equiluminant chro-
matic (red-green and blue-yellow) and achromatic stimuli,
although confirming the general vulnerability of color-
opponent visual pathways in this pathology, showed no
statistically significant difference in terms of sensitivity
between the 2 techniques (109). Other testing techniques
requiring validation include steady-state VEPs to periodic
visual stimuli (110) and low-contrast patterned stimuli,
with ff-VEPs and mf-VEPs (83,111,112).

Finally, VEPs response can be obtained through flash
stimulation. Intersubject variability is higher compared with
pattern-reversal stimulation, but the flash technique still
finds a role in several patient populations including young
children, noncompliant individuals, and those suspected of
functional neurological disorders or malingering (5).

CONCLUSIONS AND
FUTURE PERSPECTIVES

ff-VEPs represent an important technique in clinical
practice, able to rapidly explore the entire visual pathway
and to provide robust information. Full field-VEPs can
corroborate an attack of ON, and despite limited prognostic
implications especially in the acute phase, if repeated over
time can document conduction recovery. Evolution of ff-
VEP results may guide the clinician to correctly interpret
visual relapses, discriminating between ON mimickers (e.g.,
Uhthoff phenomenon) and new inflammatory events. This
has important therapeutic implications. Although neuro-
physiology has been excluded from the latest version of the
McDonald criteria for the diagnosis of MS (27), ff-VEPs
should be considered a supportive paraclinical test in the
routine assessment of patients with suspected MS.

mf-VEPs are a promising technique able to topograph-
ically assess conduction along the visual pathway, identify-
ing partial defects, which may not alter standard ff-VEPs,
and potentially allow for detailed function-structural anal-
ysis. mf-VEPs are primarily confined to the field of research
because acquisition is time-consuming compared with ff-
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VEPs and further standardization is required, particularly in
the interpretation of testing results. In addition, the use of
different stimuli such as low-contrast stimuli (83,111,112)
may increase VEPs diagnostic and prognostic power
(54,113–115).
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