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a b s t r a c t 

In this study, we introduce two hybrid artificial neural network models with particle swarm optimization 

algorithm to diagnose diabetic retinopathy based on the Video-Oculography signals. The hybrid models 

use Discrete Wavelet Transform and Hilbert-Huang Transform separately to extract features from the sig- 

nals. The classification performance of both models is analyzed comparatively. We show that the model 

based on Hilbert–Huang Transform exhibits better classification performance than the model based on 

the Discrete Wavelet Transform. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Diabetic retinopathy occurs in people with diabetes because of

damaging the blood vessels in the retina. Diabetic retinopathy in-

volves early and late stages, which are defined as non-proliferative

diabetic retinopathy (NPDR) and proliferative diabetic retinopathy

(PDR). In early stages (NPDR), fluid leakage on retina blood ves-

sels is observed. In late stages (PDR), new blood vessels are formed

on the retina [1] . Diabetic retinopathy is usually diagnosed clin-

ically. In the advanced stages patients have decreased vision due

to the complications of the disease. However, in the early stages

the changes in ocular structures are just can be seen during rou-

tine ocular examination. Optic coherence tomography (OCT) device

can be used to detect macular diseases such as diabetic macular

edema, vitreomacular traction and epiretinal membranes. Fundus

fluorescein angiography (FFA) can be used to detect retinal vascu-

lar changes such as ischemia, microaneurysms, artery or vein oc-

clusion [2] . In this context, early detection is significant to limit

the potential of vision loss because different medical tests provide

information only when disease complications occur. 

The disease stage has been detected with image processing and

artificial intelligence methods by using retinal images [3–5] . Priya
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nd Aruna [6] compared probabilistic neural network, bayes clas-

ifier and support vector machine techniques to classify diabetic

etinopathy by using fundus images. Rajput et al. [7] used k-means

lustering algorithm and wavelet transform to extract features

rom retinal fundus images of patients with diabetic retinopathy.

oronha et al. [8] obtained fundus images features by using dis-

rete wavelet transform and classified them by support vector ma-

hine algorithm. Rokade and Manza [9] used k nearest neighbor

lassification and wavelet transform methods to extract hard exu-

ates in retinal images of patients with diabetic retinopathy. Solkar

nd Das [10] preferred probabilistic neural network and support

ector machine techniques to classify diabetic retinopathy by us-

ng blood vessel extraction from retinal images. 

During the last several decades, physiological signals of eye

uch as Electrooculography (EOG), Video-Oculography (VOG) and

lectroretinography (ERG) have been widely used by physicians to

etect eye disorders. In recent years, VOG has become a popular

ideo-based non-invasive measurement method and provides in-

ormation about eye movements with high accuracy. This method

s commonly used to design hardware for tracking eye move-

ents [11] . Clarke et al. [12] presented an eye tracking sys-

em which is based on complementary metal-oxide semiconduc-

or (CMOS) image sensors to recognize the pupil and other eye

eatures. The proposed model has not required complicated im-

ge processing algorithm. It generally works well when gaze is

https://doi.org/10.1016/j.chaos.2018.06.034
http://www.ScienceDirect.com
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Fig. 1. Signal sub-band decomposition with discrete wavelet transform. 
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ointing straight ahead, but the system provides large error at ec-

entric gaze positions. Chen et al. [13] introduced a healthy vol-

nteer to conduct a sinusoidal monitoring test to verify the pupil

ocation for WIFI-based VOG system. They showed that the pro-

osed method performed well. Kim et al. [14] implemented a real-

ime three-dimensional VOG system which could measure horizon-

al, vertical and torsional eye movements and calculate the pupil

adius. Hanuska et al. [15] reported that patients with Parkin-

on’s disease have longer latencies in vergence eye movements

VEM) metrics obtained by using VOG signals for slower and hy-

ometric divergence. Recently, we proposed multi-layer percep-

ron and radial basis function neural network models for the clas-

ification of diabetic retinopathy disease based on VOG signals

16] . 

Due to its potential for the diagnosis of diabetic retinopa-

hy, different approaches might be promising to extract cru-

ial information from VOG signals. In this context, different

eature extraction methods are required to be applied for the

re-processing phase of VOG signals. Therefore, in this study

e propose a new hybrid decision support system to diagnose

evels of diabetic retinopathy by using horizontal and vertical

OG signals. The hybrid decision support system, ANNPSO con-

ists of a conventional Artificial Neural Network (ANN) with a

raining part based on Particle Swarm optimization (PSO). For

his aim, we consider both Discrete Wavelet Transform (DWT)

nd Hilbert-Huang Transform (HHT) to extract statistical fea-

ures of VOG signals. We comparatively attempt to show the

lassification performances of DWT-ANNPSO and HHT-ANNPSO

odels for diagnosis of disease. We also examine the sta-

istical performance of both models based on the confusion

atrix. 

In our previous study [16] , the observed VOG dataset in-

ludes 21 samples and three classes (Healthy: 7, NPDR: 7 and

DR: 7). The distribution of three classes in the test dataset

4 samples) is not homogenous. Each sample has five statisti-

al features (maximum, minimum, mean, standard deviation and

ariance) calculated with DWT. The classification model topol-

gy has 25 inputs, one output neuron and one hidden layer

ith 18 neurons for Multilayer Perceptron (MLP) and Radial Ba-

is Function (RBF) models. We trained the MLP and RBF mod-

ls with training dataset (80% of dataset) for 200 iterations and

ested with 20% of dataset. Our results showed that proposed

BF model results in better classification performance than MLP

odel. 

In this study, the observed VOG dataset includes heterogeneous

0 samples and three classes (Healthy: 17, NPDR: 16 and PDR: 17).

s  
he distribution of three classes in the test dataset (10 samples)

s homogenous. Four statistical features (maximum, minimum, root

ean square and standard deviation) are extracted from each sam-

le by using DWT and HHT. The DWT-ANNPSO model has 20 in-

uts, one output neuron and one hidden layer with 16 neurons.

HT-ANNPSO model has 4, 8, 12 and 16 input neurons respec-

ively for different intrinsic mode function (IMF) groups. We train

he DWT-ANNPSO and HHT-ANNPSO models with training dataset

80% of dataset) and test with 20% of dataset. The training phase

s conducted with 200 trials including 1000 epochs for both mod-

ls. Our results show that proposed HHT-ANNPSO model results in

etter classification performance than DWT-ANNPSO model. 

In sum, comparing the study given in [16] , our current study

as dataset with large size and uses homogeneous random se-

ection algorithm in preparation of training and test dataset. The

elected dataset is suitable for the real time decision making in

linical studies. Using of ANNPSO hybrid model to classify diabetic

etinopathy with VOG signal is the novelty in literature. The pro-

osed model is more compact designed with small input and hid-

en layer size than our previous study. 

. Materials and methods 

We propose a new hybrid decision support system to diagnose

evel of diabetic retinopathy by using horizontal and vertical VOG

ignals. The system consists of four phases; first phase is the sig-

al measurement, second phase is feature extraction through DWT

nd HHT methods separately, third phase is classification with

roposed hybrid model and fourth phase is optimization of the

eights and biases of designed model. 

In signal based studies, process of feature extraction is signifi-

ant in time–frequency domain analysis. Therefore, different signal

nalysis techniques have been used such as Fourier, Wavelet and

ilbert-Huang transform [17–19] . The wavelet transform is a com-

only used method for efficiently signal analysis in time-domain.

t exhibits the signals minutiae in the multi-resolution analysis, but

avelet transform can not achieve fine resolutions in both time do-

ain and frequency domain simultaneously [18] . For this reason,

HT has been offered to process non-stationary and nonlinear sig-

als [19] . The HHT is an adaptive signal analysis method that com-

ines the empirical mode decomposition (EMD) and the Hilbert

pectral analysis (HSA). Any complicated data set in HHT can be

ecomposed into a finite and often small number of IMFs [20] . The

HT method which is suitable for analyzing nonlinear and non-

tationary data, has been generally used to extract features from
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Fig. 2. VOG Signal and its DWT coefficients: a) Healthy, b) NPDR and c) PDR exam- 

ples. 
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electrocardiogram (ECG), electromyogram (EMG), skin conductivity

(SC) and respiration changes (RSP) [21] . 

2.1. Dataset 

In order to measure accurately the performance of proposed

model, a VOG signal dataset is prepared using 200 Hz internal
onitoring camera located in the Metrovision MonPackOne Elec-

rooculography device. The observed dataset includes 50 samples

nd three classes (Healthy: 17, NPDR: 16 and PDR: 17). Four sta-

istical features (maximum, minimum, root mean square and stan-

ard deviation) are extracted from each sample by using DWT and

HT. 

.2. Feature extraction 

We extract different statistical features with DWT by using 4th

evel Coiflet wavelet (Coif4) and HHT by decomposing IMFs. The

avelet coefficients are obtained by dividing into sub-band fre-

uencies: approximation (A4) and detail wavelet coefficients (D1-

4) from each VOG signals. Four different statistical features (max-

mum, minimum, root mean square and standard deviation) are

btained from both wavelet coefficients and HHT IMFs. 

.2.1. DWT 

In this study, we first extract statistical features by using DWT.

he number of decomposition levels and appropriate wavelet se-

ection are very crucial in DWT method. The wavelet selection de-

ends on the signal to be analyzed. The number of decomposi-

ion levels is selected based on the dominant frequency compo-

ents of the signal [22] . In this study, Coiflet wavelet is used due to

ts higher scaling capability in signal-processing techniques rather

han Haar and Daubechies wavelets [23] . Signal sub-band decom-

osition with DWT is shown in Fig. 1 . 

As seen in Fig. 1 , the original signal (x[n]) is passed through a

igh pass filter (g[n]) and a low pass filter (h[n]) to acquire the

etail (D1-D2-D3-D4) and approximation (A4) coefficients, respec-

ively. The same operation is continued to determine decomposi-

ion level only for approximation coefficients. DWT coefficients of

OG signals, which are taken as feature vectors are calculated by

th level Coiflet wavelet (Coif4) which leads to a smoother wavelet.

he following statistical features (maximum, minimum, root mean

quare and standard deviation) of the coefficients are calculated for

ach sub-band to reduce the dimension of feature vectors and rep-

esent the time-frequency distribution of VOG signals. 

Schneck et al. measured fast oscillation amplitudes of EOG sig-

als obtained from three subject groups (non-diabetic, diabetic

ithout retinopathy and diabetic with retinopathy) and also ob-

erved that fast oscillation amplitudes of EOG signals are signif-

cantly reduced in both diabetic group compared with healthy

roup. In addition, they apply statistical ANOVA-Tukey test with

 < 0.01 significant criteria to show difference between the three

ubject group measurements. It is shown that there is signif-

cant difference among non-diabetic and diabetic group signals

 p < 0.0 0 04) [24] . In consisted with the results by Schneck et al.,

e observed that VOG signal amplitudes of the groups with di-

betic retinopathy (NPDR and PDR) are less than health group

 Fig. 2 ). Reducing amplitude of VOG signal occurs on change the

tatistical features of each subject group. We calculated DWT co-

fficients for each Healthy, NPDR and PDR VOG signals as given

n Fig. 2 , where high frequency properties (D1-D4) and low fre-

uency properties (A4) during 4th level wavelet decomposition of

OG signal are shown. Amplitude of Healthy VOG signal and its

WT coefficients is higher than NPDR VOG signal and its DWT co-

fficients. PDR VOG signal and its DWT coefficients have distorted

ppearance rather than other VOG signal groups. 

.2.2. HHT 

We also extract statistical features by using HHT. HHT, which is

ased on the local characteristics of the signal’s time scale and de-

nes the instantaneous frequency, is a time-frequency localization

nalysis method that is more adaptive than DWT [19] . 
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The HHT consists of two parts: Empirical Mode Decomposition

EMD) and Hilbert Spectral Analysis (HSA). EMD is a key part of the

HT method, where a complex dataset can be decomposed into

nite number of IMFs [20] . An IMF is defined as a function that

atisfies the following conditions: 

1) In the whole data set, the number of extrema and the number

of zero crossings must either equal or differ at most by one. 

2) At any data point, the mean value of the envelope defined using

the local maxima and the local minima is zero. 

The EMD algorithm is based on a recursive structure called sift-

ng. Given any signal, X(t), the IMFs are computed through the fol-

owing steps: 

a. Initialize i = j = 1. 

b. Define all the local extrema of X(t) and divide the extrema into

two sets: the maxima and the minima. 

c. Then connect all the local maxima by a cubic spine line to form

an upper envelope X upper (t). Repeat the procedure for the local

minima to form a lower envelope X lower (t). 

d. Calculate the mean signal 

M i, j (t) = 

X upper (t) + X lower (t) 

2 

(1) 

e. Subtract the mean M i,j (t) from X(t) to obtain the first candidate

to IMF H i,j (t): 

H i, j (t) = X (t) − M i, j (t) (2)

f. Compare conditions of the sifting: If H i,j (t) should satisfy the

definition of an IMF, then stop. Else, in the subsequent sifting

process, H i,j (t) is treated as the signal for the next round of sift-

ing, and j = j + 1;Then restart the algorithm from Step 2. After

repeated sifting, up to k times, if H i,k (t) becomes an IMF, we

denote by c i (t) the first IMF. 

g. Set the residue r i (t) = X(t) − c i (t) (3); if r i (t) is less than some

predetermined value or becomes non-oscillatory thus the num-

ber of IMF’s depends on the signal and is not a fixed value, the

sifting process can be stopped. 

Else, in the subsequent sifting process, r i (t) is treated as the sig-

al for the next round of sifting, and i = i + 1; then restart the algo-

ithm from Step 2. End when r n (t) has at most one extrema, after

eing repeated n times. 

By summing up above, we finally obtain: 

 (t) = 

n ∑ 

i =1 

c i (t) + r n (t) (4)

Thus, the original signal X(t) are decomposed into n IMFs and a

esidue r n (t), which can be either the adaptive constant. 

In order to provide illustrative examples for the HHT features,

e obtained IMFs for Healthy, NPDR and PDR VOG signals by using

MD and plotted respectively, in Figs. 3–5 . As seen in Figs. 3 and 4 ,

mplitude of Healthy VOG signal and its four IMFs is higher than

PDR VOG signal and its four IMFs. PDR VOG signal and its four

MFs have disrupted form rather than other VOG signal groups in

ig. 5 . 

Four statistical features; maximum, minimum, root mean

quare and standard deviation; are calculated from each IMF af-

er the decomposition of VOG signals by using HHT. These statisti-

al features, used as a single input vector to the ANNPSO classifier,

an be seen as a feature extraction step in the diagnosis of diabetic

etinopathy. 

.3. ANNPSO classifier 

ANN has been widely used in a variety of medical applications

ecause of high generalization capability [25–28] . Therefore, in this
tudy, we use a hybrid ANN model. The model, ANNPSO consists of

onventional ANN topology whose training part is based on parti-

le swarm optimization (PSO) algorithm. The model has three lay-

rs: an input layer, a hidden layer and an output layer. The statis-

ical features obtained from DWT and HHT methods separately are

pplied to the input layer. The hidden layer with 16 neurons was

reated by topology testing. 

In the model training phase, we generate the training and test

ataset with randomly selected raw dataset that involves three

lasses (Healthy: 17, NPDR: 16 and PDR: 17 samples). During the

election, the datasets are designed homogeneously to include

hree classes. The training dataset has 40 samples (80% of the

aw dataset) and the test dataset has 10 samples (20% of the

aw dataset). Moreover, we perform 200 trials consisting of 1000

pochs for both hybrid models to obtain the best performance. The

odels use a nature algorithm inspired from the behavior of bird

ocks called as a swarm instead of traditional learning algorithms.

n this algorithm, each solution is represented as a vector called

s a particle (bird) [29] . The population (swarm) may contain any

andom number of initial particles. Each particle starts with its

nitial position and velocity, then moves in the solution space to

chieve the optimum result [30] . The main computational steps of

SO include generating initial position and velocity of each parti-

le in population and updating position and velocity for a certain

umber of generations to get the optimal solution [31] . 

Finally, we determine the classification performance for the

odels by using accuracy method (confusion matrix). The method

xpressions are given as follows in Eqs. (5) –(8) : 

ccuracy (%) = 100 ∗ TP + TN 

TP + TN + FP + FN 

(5) 

ensitivity (%) = 100 ∗ TP 

TP + FN 

(6) 

pecificity (%) = 100 ∗ TN 

TN + FP 

(7) 

alse Discovery Rate (%) = 100 ∗ FP 

TP + FP 

(8) 

here FN, FP, TN and TP denote False Negative, False Positive, True

egative and True Positive respectively. 

. Results and discussion 

We consider one hybrid classification model for the DWT inves-

igation. The model has 20 inputs, one output neuron and one hid-

en layer with 16 neurons. We also construct 7 models for HHT in-

estigation. For IMF1,2,3,4; IMF1-2; IMF1-3 and IMF1-4; the mod-

ls have 4, 8, 12 and 16 input neurons respectively. The weights

nd biases of the models are optimized by using PSO algorithm.

hen, the optimized models are tested with dataset and the per-

ormance of the models are observed. 

The extracted features of the horizontal VOG signals are shown

s an example in Figs. 6–9 for each method (DWT and HHT).

igs. 6 and 7 represent extracted statistical features (maximum,

inimum, root mean square and standard deviation) of left and

ight horizontal DWT coefficients for Healthy, NPDR and PDR

OG signals, where Healthy1, Healthy2, Healthy3, Healthy4 and

ealthy5 stands for Healthy VOG signal over D1, D2, D3, D4 and A4

oefficients respectively. The term NPDR is referred to NPDR VOG

ignal and PDR to PDR VOG signal. 

The low-frequency coefficient (A4), which is regarded as the

haracteristic behavior of the signal, is the most vital compo-

ent and it includes more information than other wavelet coeffi-

ients (D1-D4) [32] . It confirms that the statistical features of ob-

ained DWT coefficients from left and right horizontal VOG signals



168 C. Kaya et al. / Chaos, Solitons and Fractals 114 (2018) 164–174 

0 200 400 600 800 1000

-2000

0

2000

4000

6000

8000

Data Samples

Vµ

(a)

0 0.2 0.4 0.6 0.8 1
-5000

0

5000

Vµ

IMF1

0 0.2 0.4 0.6 0.8 1
-2000

0

2000
IMF2

Vµ

0 0.2 0.4 0.6 0.8 1
-5000

0

5000
IMF3

Vµ

0 0.2 0.4 0.6 0.8 1
-1

0

1
x 10

4 IMF4

Vµ

0 0.2 0.4 0.6 0.8 1
0

5000

10000

Time (s)

Residual
Vµ

(b)

Fig. 3. The components obtained from 4th level EMD decomposition of healthy VOG signal, (a) Healthy VOG signal (Raw Data) (b) Healthy IMFs (IMF1-IMF4) and residual. 
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Fig. 4. The components obtained from 4th level EMD decomposition of NPDR VOG signal, (a) NPDR VOG signal (Raw Data) (b) NPDR IMFs (IMF1-IMF4) and residual. 
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Fig. 6. Statistical features of Left Horizontal DWT coefficients for Healthy, NPDR and PDR VOG Signals (a) maximum, (b) minimum, (c) root mean square and (d) stan- 

dard deviation. The figure shows range of variation (min-max) and deviations of low-frequency coefficient (A4) and high-frequency coefficients (D1-D4) during wavelet 

decomposition for left horizontal VOG signal. 
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Fig. 7. Statistical features of Right Horizontal DWT coefficients for Healthy, NPDR and PDR VOG Signals (a) maximum, (b) minimum, (c) root mean square and (d) stan- 

dard deviation. The figure provides range of variation (min-max) and deviations of low-frequency coefficient (A4) and high-frequency coefficients (D1-D4) during wavelet 

decomposition for right horizontal VOG signal. 

Table 1 

Statistical performance of DWT-ANNPSO model. 

Eye movement Accuracy (%) Sensitivity (%) Specificity (%) 

Left horizontal 96.00 93.75 96.97 

Right horizontal 94.67 92.16 96.05 

Left vertical 92.00 87.99 94.06 

Right vertical 90.67 86.03 93.08 

Table 2 

False discovery rate performance of DWT-ANNPSO model. 

Eye movement Healthy class (%) NPDR class (%) PDR class (%) 

Left horizontal 5.88 0 0 

Right horizontal 5.88 0 5.56 

Left vertical 0 5.88 5.88 

Right vertical 5.88 6.25 5.88 

 

 

 

Table 3 

Statistical performance of HHT-ANNPSO model for left horizontal eye movement. 

Left horizontal features Accuracy (%) Sensitivity (%) Specificity (%) 

IMF1 90.67 85.78 92.93 

IMF2 92.00 87.99 93.97 

IMF3 93.33 89.83 94.95 

IMF4 94.67 92.03 95.99 

IMF1-2 96.00 94.00 97.03 

IMF1-3 97.33 95.96 98.01 

IMF1-4 98.67 97.92 98.99 

 

m  
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H  

I
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r  

r  
demonstrate different range of variation (min-max). Meanwhile, A4

coefficient is obtained with higher range of min-max variation and

deviation than D1-D4 coefficients for each class (Healthy, NPDR

and PDR) in Figs. 6 and 7 . 
Figs. 8 and 9 represent extracted statistical features (maximum,

inimum, root mean square and standard deviation) of left and

ight horizontal four first IMFs (IMF1-4) calculated by HHT for

ealthy, NPDR and PDR VOG signals, where Healthy1, Healthy2,

ealthy3 and Healthy4 stands for Healthy VOG signal over IMF1,

MF2, IMF3 and IMF4 respectively. 

As seen in Figs. 8 and 9 , the deviation of the statistical features

or the left horizontal IMF signal is obtained with higher than the

ight horizontal IMF signals. In additional, the outlier points of the

ight horizontal IMF signals are more than the left horizontal IMF
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Fig. 8. The range of variation (min-max) and deviation of components (IMF1-4) obtained from 4th level EMD decomposition with left horizontal VOG signal for Healthy, 

NPDR and PDR, (a) maximum, (b) minimum, (c) root mean square and (d) standard deviation. 

Table 4 

Statistical performance of HHT-ANNPSO model for right horizontal eye movement. 

Right horizontal features Accuracy (%) Sensitivity (%) Specificity (%) 

IMF1 89.33 84.19 92.13 

IMF2 90.67 85.65 92.90 

IMF3 92.00 87.86 93.94 

IMF4 93.33 89.70 94.92 

IMF1-2 94.67 91.90 95.96 

IMF1-3 96.00 93.74 96.94 

IMF1-4 97.33 96.08 98.04 

Table 5 

Statistical performance of HHT-ANNPSO model for left vertical eye movement. 

Left vertical features Accuracy (%) Sensitivity (%) Specificity (%) 

IMF1 88.00 81.86 90.97 

IMF2 89.33 83.69 91.89 

IMF3 89.33 83.82 91.92 

IMF4 90.67 85.65 92.90 

IMF1-2 92.00 87.86 93.94 

IMF1-3 93.33 89.57 94.89 

IMF1-4 94.67 91.91 96.02 
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ignal. Therefore, the left horizontal IMF features can increase clas-

ification performance. 
The accuracy analysis (confusion matrix) is realized for each

OG signal to obtain the statistical performance of the models. Sta-

istical performance results of DWT-ANNPSO model are given in

able 1 . We show that DWT-ANNPSO model on left horizontal eye

ovement results in both better accuracy and specificity than right

orizontal eye movement. Moreover, DWT-ANNPSO model on left

ertical eye movement also performs better in classification with

n accuracy of 92.00% and specificity of 94.06% than right verti-

al eye movement with an accuracy of 90.67% and specificity of

3.08%. It is also seen that DWT-ANNPSO model shows more ro-

ust character to classify the disease on horizontal eye movement

average accuracy = 95.33%) than vertical eye movement (average

ccuracy = 91.33%). 

In addition, we apply false discovery rate analysis [33] to show

ercent of false prediction between three subject classes (Healthy,

PDR and PDR) for the test dataset. False discovery rate perfor-

ance results of DWT-ANNPSO model are given in Table 2 . We

how that DWT-ANNPSO model on left horizontal eye movement

esults in better percentage correct prediction than right horizon-

al eye movement. Moreover, DWT-ANNPSO model on left vertical

ye movement also performs successfully in classification with av-

rage false prediction of 3.92% than right vertical eye movement

f 6%. It is also seen that DWT-ANNPSO model shows more robust

haracter to classify the disease on horizontal eye movement (aver-
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Fig. 9. The ranges of variation (min-max) and deviations of components (IMF1-4) obtained from 4th level EMD decomposition with right horizontal VOG signal for Healthy, 

NPDR and PDR, (a) maximum, (b) minimum, (c) root mean square and (d) standard deviation. 

Table 6 

Statistical performance of HHT-ANNPSO model for right vertical eye movement. 

Right vertical features Accuracy (%) Sensitivity (%) Specificity (%) 

IMF1 86.67 80.09 89.95 

IMF2 88.00 81.93 90.99 

IMF3 89.33 83.76 91.91 

IMF4 89.33 83.89 91.94 

IMF1-2 90.67 85.72 92.92 

IMF1-3 92.00 87.75 93.97 

IMF1-4 93.33 89.42 94.74 

Table 7 

Statistical performance of HHT-ANNPSO model with the IMF1-4. 

Eye movement Accuracy (%) Sensitivity (%) Specificity (%) 

Left horizontal 98.67 97.92 98.99 

Right horizontal 97.33 96.08 98.04 

Left vertical 94.67 91.91 96.02 

Right vertical 93.33 89.42 94.74 
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age false prediction = 2.88%) than vertical eye movement (average

false prediction = 4.96%). 

Then, the performance of seven different HHT-ANNPSO mod-

els is analyzed for seven different IMF groups and the results for
ach eye movement are given in Tables 3–6 . As seen in Tables

–6 , IMF1-4 group performs better classification performance on

oth eye movements than other IMF groups. We show that HHT-

NNPSO model on left horizontal eye movement results in both

etter accuracy and specificity than right horizontal eye movement

or IMF1-4 group. Moreover, HHT-ANNPSO model on left vertical

ye movement operates more successfully in classification with an

ccuracy of 94.67% and specificity of 96.02% than right vertical eye

ovement with an accuracy of 93.33% and specificity of 94.74% for

MF1-4. 

In the light of all the findings, it is seen that multiple IMF

roups (IMF1-2, IMF1-3, IMF1-4) perform robust character than

ingle IMF entries. The best performance between multiple IMF

roups is obtained for IMF1–4 group. HHT-ANNPSO model exhibits

igher performance on classification of horizontal and vertical

ye movements (average accuracy = 98% and 94%, average sensitiv-

ty = 97% and 90.66% and average specificity = 98.51% and 95.38%

espectively) than DWT-ANNPSO model (average accuracy = 95.33%

nd 91.33%, average sensitivity = 92.95% and 87.01% and average

pecificity = 96.51% and 93.57% respectively). 

Finally, since the best performance between multiple IMF

roups is obtained for IMF1–4 group, we also give the statistical

nd false discovery rate performance with the IMF1-4 separately

n Tables 7 and 8 in order to compare its performance with that
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Table 8 

False discovery rate performance of HHT-ANNPSO model with the IMF1-4. 

Eye movement Healthy class (%) NPDR class (%) PDR class (%) 

Left horizontal 5.56 0 0 

Right horizontal 0 5.88 0 

Left vertical 5.56 0 5.88 

Right vertical 0 5.88 5.88 
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f DWT-ANNPSO model in Tables 1 and 2 . The obtained results

how that HHT-ANNPSO with the IMF1-4 performs better in clas-

ification and has less false discovery rate clearly than the DWT-

NNPSO f or each eye movement. 

. Conclusion 

This study constitutes a new attempt to introduce the hy-

rid approach for the diagnosis of diabetic retinopathy by using

OG signals. Two hybrid ANN models based on PSO algorithm

re presented. Different four statistical features are extracted from

avelet coefficients by DWT and IMFs by HHT for the training of

he models. Therefore, in this study, we first showed the applica-

ility of hybrid DWT-ANNPSO and HHT-ANNPSO models for the di-

gnosis of diabetic retinopathy by using VOG signals. Our results

ndicate that HHT-ANNPSO model exhibits better classification per-

ormance than DWT-ANNPSO model. We also showed that HHT-

NNPSO with the IMF1-4 provides the best performance. 

We have already proposed an ANN model to diagnose diabetic

etinopathy by using VOG signals and obtained the classification

ccuracy of 95.83% [34] . In another study, we suggested a compar-

tive diabetic retinopathy diagnosis study from VOG signals with

sing ANN model which is trained by DWT and C4.5 algorithm

oefficients. We obtained the classification accuracy of 93.75% and

6.87% respectively [35] . In addition, we achieved classification ac-

uracy of 94% using multilayer perceptron neural network (MLP)

ith diabetic retinopathy by using VOG signals [16] . The obtained

esults indicate that the HHT-ANNPSO model with the IMF1-4 pro-

ides the better performance than the previous ones. Therefore, we

ay suggest that this model can be used for early diagnosis of di-

betic retinopathy. 

Since patients with diabetes are under risk of developing di-

betic retinopathy, it is essential to classify and stage the sever-

ty of diabetic retinopathy earlier [36,37] . We hope that our study

ill inspire further approaches aimed at the diagnosis of dia-

etic retinopathy by means of new intelligent decision-making ap-

roaches. As a future work, we plan to use different feature extrac-

ion methods for pre-processing and research detectability of vari-

us eye diseases by using VOG signals. We also plan to use differ-

nt classification methods such as Support Vector Machine (SVM),

earning Vector Quantization (LVQ) and different Neural Network

odels to provide the further insight into the classification of dia-

etic retinopathy. 
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